

FAIR beam intensity and quality limitations

Oliver Boine-Frankenheim^{1,2}

Primary Beams Division, Beam Physics Department, GSI, Darmstadt Electrical Engineering and IT Department, Accelerator Physics Group, TU Darmstadt

Contents

- Beam intensity and quality limitations (simplified)
 - Space charge, beam instabilities, beam lifetime, intra-beam scattering
- Extraction to targets: Slow, Fast with bunch compression
- Future trends
- Other contributions related to the FAIR beam parameters:
 - **Today:** Halo collimation, Beam induced activation (Ivan Strasik)
 - **Tomorrow:** Beam parameters on targets (Vladimir Kornilov)

Glossary (ring accelerators)

Resonances: $mQ_x + nQ_y = Sp$ (that's why you better order a Linac :-)

Lifetime and (dynamic) pressure:

$$\tau^{-1} = \beta_0 \varpi_{loss} \frac{P(N, t)}{k_B T} \quad \text{(beam lifetime)}$$
$$\frac{dP}{dt} = \tau_p^{-1} (P - P_0) + \alpha \eta_{loss} NP \text{ (pressure)}$$

(Dynamic) aperture:

- Symplectic motion for hadrons
- Unstable chaotic orbits for $\hat{a} > DA$

Beam parameters (at extraction):

- # ions per cycle
- Emittances
- Bunch length, dp/p (bunch area)

Machine parameters:

- apertures
- bucket areas
- cycle rate
- cooling rates
-

Emittance, Bunch area (Liouville: should be conserved) Emittances: $\langle \varepsilon_x \rangle = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$ [mm-mrad] Bunch area: $A_B = \Delta E \tau$ [eVs]

Collective effects in the FAIR rings

Incoherent space charge:

 $\varepsilon_0 \nabla \cdot \vec{E} = \rho$ (in the rest system of the beam) tune shift: $\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{4}{\varepsilon_y \beta_0^2 \gamma_0^3} \frac{1}{1 + \sqrt{\varepsilon_y / \varepsilon_y}} \lesssim 0.3 - 0.5$

-> beam intensity and emittance limits

Impedances:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ (laboratory system)

- image currents in the beam pipe: heat load

- magnetic/resistive materials: ferrite, magnetic alloy

-> beam intensity limits and feedback requirements

Thin beam pipe (0.3 mm stainless steel)

Intrabeam scattering:

- e.g. laser cooling in SIS-100
- -> emittances and momentum spread

Secondary particles:

electron clouds created by residual gas ionization and wall emission. -> beam intensity limits (slow extraction)

In the FAIR synchrotrons SIS-18 and SIS-100 different collective effects occur simultaneously. Beam loss in SIS-100 has be limited below 5 % (injection energy) and 1-2 % (extraction energy) -> Computer modeling in combination with dedicated experiments (model validation) is essential. 4

'Incoherent space charge limit'

Incoherent space charge:

- $\varepsilon_0 \nabla \cdot \vec{E} = \rho$ (in the rest system of the beam) -> tune shift: $\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{4}{\varepsilon \beta_0^2 \gamma_0^3}$ -> tune spread: $Q_x(\hat{a}_x, \hat{a}_y) = Q_{0,x} - \Delta Q_x^{sc}(\hat{a}_x, \hat{a}_y)$
- -> intensity limit: $\left| \Delta Q^{sc} \right| \lesssim 0.1 0.5$

The (incoherent) transverse space charge force is the main intensity limiting effect in the LHC injector chain and in the FAIR synchrotrons

Estimated 'limits' in SIS100 with dual rf buckets:

U²⁸⁺: 6-7 x 10¹¹ (4-5 x 10¹¹/s) p: 4 x 10¹³

Tune footprint (CERN PS simulation, Franchetti 2003)

Compensation ? M. Aiba et al., PAC 2007

BMBF project: Compensation of space charge effects in hadron bunches for low and high energies

Electron lens to compensate (partially) for the beam-beam tune shift

Questions to be addressed:

- Co-moving vs. counter-propagating beams
- Tune spread compensation !
- Required number of compensators
- Effect of the induced error resonances
- Transport of low- β electron bunches Can space charge (at least partially) be compensated ?

Simulations and dedicated experiments needed !

Goal: Detailed compensations studies for FAIR and CERN.

Beam instabilities and impedances

Thin (0.3 mm) beam pipe

Longitudinal impedance:

$$Z_{\Box}(\omega) = -\frac{1}{\hat{l}} \int_{z=0}^{L} E_z(z) e^{-i\omega z/c} dz \quad [\Omega]$$

$$P_{heat} \propto \int \Re Z_{\parallel}(\omega) \cdot \lambda(\omega) \mathrm{d}\omega$$

Heat load is a possible limitation for the proton bunch length (approx. 1-2 W/m for design parameters).

'Keil-Schnell' criterion:

time

$$\frac{Z_n}{n} < \frac{mc^2 \beta^2 \gamma |\eta| (\Delta p/p_0)^2}{ql_0}$$

Observed self-bunching in an electron cooled C^{6+} beam in the ESR.

Protons vs. heavy ions: Intensity limits

Primary beams: Intermediate charge state ions (like U²⁸⁺) to reduce space charge + light ions + protons

Beam intensity and quality limitations for protons (and light ions):

- Space charge at SIS18/100 injection energies !
- Transitions crossing in SIS100 (protons).
- Beam instabilities !

Intensity limitations for intermediate charge state heavy-ions in SIS18/100:

Beam lifetime: Large cross sections for electron stripping/capture -> residual gas pressure of the order of 10⁻¹² mbar required for sufficient lifetime

Charge distributions at different

(Ch. Scheidenberger et al.)

Uncontrolled beam loss causes dynamic pressure instabilities.

Heavy-ions (continued):

- Injector: Current/emittances
 - Ion sources
 - Stripping efficiency of heavy-ions at low energies.
- Efficiency of the multi-turn injection !

-> at present HI intensities are not limited by space charge !

SIS18 multi-turn injection (MTI) efficiency

- The UNILAC->SIS18 multi-turn injection is one of the main "bottlenecks" for FAIR.
- Design goal: the UNILAC should provide the current and emittance (brilliance) to fill the (horizontal) SIS aperture to the space charge limit.
- Intermediate charge state heavy-ions: Losses well below 10 % to avoid vacuum + lifetime degradation.

Goal: GA optimization of MTI and transmission.

S. Appel, F. Petrov, under preparation

Slow extraction

Limitations of the extracted beam intensity:

- Loss at septum (activation, desorption for HI)
- Beam instabilities. Cures: rf bunching dp/p blow up.

Extracted emittance determined by dp/p and separatrix.

Questions: Optimum extraction length, spill structure, dp/p ?

Septum wires: Ø 0.025 mm (W-Re alloy) wires are mounted under tension

Optics and beam envelopes for heavy-ion slow extraction

Fast extraction to targets: Bunch compression

Fast barrier pre-compression in SIS-100

Conclusions

- Basic ring accelerator terminology
- Key beam intensity and quality limitations:
 - Apertures and bucket areas (all species)
 - Space charge and impedances (Protons and fully-stripped ions)
 - Intermediate charge state HI: Multi-turn injection and transmission
 - Activation: see next talk by I. Strasik
- Future options: sc compansation, bb digital feedback,
- Extraction to targets (see also talk by V. Kornilov)
 - Slow extraction: ideal cycle length and time-structure ?
 - Fast extraction: ideal bunch length and emittances ?
- Set of reference parameter for key experiments !

Zusatzfolien

UNILAC/SIS-18 multi-turn injection: initial dp/p

NuSTAR requirements

'Space charge limit'

We presently assume that the maximum

beam intensities in the FAIR SIS-18 and SIS-10 g current working point: $(Q_x, Q_y) = (4.17, 3.29)$ synchrotrons are 'space charge limited'

'Cures': flattened bunch profiles + resonance compensation

SIS-100 bucket areas and acceptances: U²⁸⁺

	· · · · · · · · · · · · · · · · · · ·	• •	
Bunch area eVs/u	0.1 x 2	0.15 x 8 = 1.2	1.6 x 1
Space charge factor	0.7	0.5	< 0.1
Acceptance mm mrad	150/50	100/40	100/40
Emittances mm mrad	150/50	35/15	12/5
SC tune shift ΔQ_v	-0.5	-0.3	-0.8

Tolerable longitudinal dilution : 1.5 (SIS18), 1.3 (SIS100 with compression)

SIS100 beam pipe

Special stainless steel (Böhler P506) for all dipole and quadrupole magnet chambers.

SIS100 beam pipe: thin (0.3 mm) stainless steel pipe with attached cooling pipes

- still mechanically robust (with supporting rips) for 10⁻¹² mbar
- tolerable eddy current heating (< 10 W/m) and field distortion
- sufficient shielding of beam induced EM fields above 50 kHz
- active pumping (< 20 K wall temperature)

One of the most critical components in SIS100 !

Temperature distribution with attached cooling tube

Antiprotons: HESR and PANDA requirements

Beam instabilities and impedances in SIS-100

Beam loss in SIS-100: "Hands-on-maintenance"

Loss estimates (example: U²⁸⁺)

SIS-18 beam lose	s/cycle	Fractional	(%)
injection rf capture space charge ionization fast extraction	2E11-	>1.2E11	10 10 10 30 2

SIS-100 beam lose	s/cycle	Fractional (%)
injection		2
space charge		10
ionization	4 5F1	1-\3 5E11 5
slow extraction	7.0L1	10.5211

Expected main beam loss mechanisms:

- Charge exchange (dynamic vacuum)
- $U^{28+} + X \rightarrow U^{29+} + X + \epsilon$ (Lifetime)⁻¹: $\tau^{-1} = \beta_0 \alpha \sigma_{loss} \frac{P(N,t)}{\nu \tau}$
- Space charge induced resonance crossing
- Injection/Extraction

Uncontrolled loss below 1 W/m (1 GeV Protons). **Design goal:** controlled losses on collimators

Conclusions: Beam parameter and intensity limitations

User requirements, primary beams:

 NuSTAR: short heavy ion bunch (50-100 ns) or slow extraction (≥ 1 s) extracted intensity: N/s > 1E11/s (was 1E12/s in the CDR/2001)

- PANDA: short (50 ns) proton bunch (2E13)
- cycle times determined by cooling times in CR collector ring (approx. 1 s for HI, 10 s for pbars) or extraction plateau.

Expected intensity limitations for primary beams (SIS-100):

- 'space charge limit'
- acceptances and rf bucket area (reduced by space charge)
- activation/damage due to beam loss
- beam instabilities (protons)
- -> estimated limits (large errors bars):

 U^{28+} : 6-7 x 10¹¹ per cycle (for other HI according to space limit and injector performance)

p: 4 x 10¹³

UNILAC/SIS-18 limitations:

- UNILAC current/emittance and multi-turn injection efficiency
- rf bucket area for fast ramping
- charge exchange and dynamic vacuum (HI)
- space charge and resonance crossing

UNILAC/SIS18 Beam parameter

	UNILAC today	FAIR	2017
Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺
Current (mA)	5/1	15	3
Emittance, 4ơ (h, mm mrad)	7/7	5	7
Momentum spread (2ơ)	1E-3/1E-3	5E-4	5E-4
	SIS-18 today	FAIR design	2017
Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺
Reference energy GeV/u	0.2/1	0.2	1
lons per cycle	4E10/4E9	1.5E11	2E10
cycle rate (Hz)	0.5 Hz	2.7 Hz	2 Hz
Long. dilution	> 2	1.5	2

UNILAC/SIS-18 presentations: L. Groening, J. Stadlmann

FAIR primary beam chain: Protons

Optional: 8 injections and up to 4E13 protons ('space charge limit').

Dynamic residual gas pressure

Lifetime increase (factor 3) due to NEG coating

NuSTAR: other primary ions (fast extraction)

Beam Parameters	Ref. Ion: U ²⁸⁺	Bi ²⁶⁺ , Pb ²⁶⁺ , Au ²⁶⁺	Xe ²¹⁺ , Kr	Ar ¹⁰⁺	Ref. Ion: U ²⁸⁺	Bi ²⁶⁺ , Pb ²⁶⁺ , Au ²⁶⁺	Xe ²¹⁺ , Kr	Ar ¹⁰⁺
		Commissioning Future operation in				peration in MSV		
Time structure				fas	t extraction			
Repetition rate		0.5-0	.01 Hz		0.7-0.1 Hz			
Number of ions per cycle	2x10 ¹⁰	3x10 ⁹	7x10 ⁹	8x10 ¹⁰	5x1	011	7x10 ¹¹	10 ¹²
Ref. energy [GeV/u]		1.5		1.0		1.5		1.0
Energy range [GeV/u]		0.5-1.5						
Transverse emittance [mm mrad]	11(h)x 4(v)							
Pulse length [ns]	70			50-100				
Momentum spread					5x10 ⁻⁴			
Beam spot radius [mm]	1x2	2-4x6	2x3	3x5	1x2·	-4x6	2x3	3x5
				Stand: 08.08.2014			NES	R SPARC
GSI Helmholtzze	ntrum für Schw	erionenforschun	g GmbH					27

FAIR primary beam chain: Uranium

Fill synchrotron to the 'space charge limit' (within allowed phase space area).

Slow extraction from SIS-100

extraction of intense heavy-ion beams for NuSTAR and CBM

Heat load in SIS100: Longitudinal impedances

Thin (0.3 mm) beam pipe

Proton bunch parameters

	SIS-100
Final energy	29 GeV
Protons per cycle	2E13
cycle rate (Hz)	0.5
#bunches	1
bunch length	10 ns