Design and Developments of the Cluster-Jet Target for $\overline{P}ANDA$

Ann-Katrin Hergemöller

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik PANDA Meeting Jülich, December 10th 2014

Spherical Joint

 \Rightarrow Stepper motors for moving successfully set into operation

Laval nozzle

Skimmer/Collimator chamber

- Skimmer and collimator installed on xy-table ⇒ position adjustable
- Adjustment via two stepper motor devices
- Electrical installation ongoing

 $f = 28 \,\mathrm{mm}$

 $f = 100 \,\mathrm{mm}$

- Two camera ports on opposite sites
- Different objective lenses offer possibility to see:
 - Nozzle, beam and skimmer $(f = 28 \,\mathrm{mm})$
 - Detailed view of beam and skimmer tip (f = 100 mm)

Transition Vacuum Chamber

- Separates cluster target vacuum from HESR/PANDA vacuum
- Offers camera ports for online cluster beam position and thickness monitoring

Developed by S. Grieser

Gas system and gas control

• Modules for H_2 and N_2 systems

 H_2

Gas system and gas control

 \bullet Modules for H_2 and N_2 systems

 H_2

Gas system and gas control

• Installation at target support frame

Installation of further components Electronic Rack

- Electronic rack with 4.5 kW heat exchange device
- Includes all control units of the target:
 - Computer with (temporary) slow control
 - CompactRio
 - Frequency converter of turbo pumps
 - Center3 for pressure monitoring
 - Temperature controller
 - Pressure and gas flow controller

Installation of further components Electronic Rack

- Electronic rack with 4.5 kW heat exchange device
- Includes all control units of the target:
 - Computer with (temporary) slow control
 - CompactRio
 - Frequency converter of turbo pumps
 - Center3 for pressure monitoring
 - Temperature controller
 - Pressure and gas flow controller

Installation of further components Scattering Chamber & Beam Dump

- Setup vertical in full PANDA geometry
- $\Rightarrow 2.1\,\mathrm{m} \text{ between cluster source} \\ \text{and interaction point} \\$
 - Design and construction of a scattering chamber including a scanning rod system
 - Installation of a provisional beam dump
- $\Rightarrow \text{ Test of cluster beam properties} \\ \text{at } \overline{\mathsf{P}}\mathsf{ANDA} \text{ interaction point}$

First Test of Vacuum Conditions

- Test of vacuum conditions in insulation vacuum chamber and skimmer and collimator chamber
- Forepump with 25 $\frac{m^3}{h}$, provisorily
- Vacuum conditions:
 - Insulation vacuum chamber: $< 10^{-7}\,{\rm mbar}$
 - Skimmer chamber: $< 8 \times 10^{-2}$ mbar
 - (pressure of forepump)
 - Collimator chamber: $< 10^{-7} \,\mathrm{mbar}$

Cooling Test of Cold Head

- Cooling test of cold head in cluster source
- Test without gas flow
- Temperatures:
 - $\bullet~$ Warm stage: $\approx 30\,\mathrm{K}$
 - Cold stage/nozzle: $\approx 9\,{\rm K}$
 - $\bullet~$ Cooling time $\approx 2.5\,\mathrm{h}$

Cooling curve

Setup of the cluster target \longrightarrow Next steps

- Final mounting of skimmer/collimator xy-tables and electrical installation
- Integration of snap connectors & transition vacuum chamber
- $\Rightarrow\,$ Final Setup of the cluster source
 - Installation of the final pumping station in the new laboratory
 - \Rightarrow Integration with the cluster source
 - Installation of vertical beam pipes
 - Setup of scattering chamber and beam dump
 - Setup of (temporary) slow control system for test operation

Setup of the cluster target $\longrightarrow \textbf{Next steps}$

- Final mounting of skimmer/collimator xy-tables and electrical installation
- Integration of snap connectors & transition vacuum chamber
- $\Rightarrow\,$ Final Setup of the cluster source
 - Installation of the final pumping station in the new laboratory
 - \Rightarrow Integration with the cluster source
 - Installation of vertical beam pipes
 - Setup of scattering chamber and beam dump
 - Setup of (temporary) slow control system for test operation

- Further vacuum tests
- Test of mounting system
- Test of the slow control requirements
- Gas supply requirement tests
- Investigation of the target thickness
- Determination of the best settings of skimmer, collimator and spherical joint
- Long term beam stability tests
- Test of different Laval nozzles

Summary & Outlook

The Cluster-Jet Target for $\overline{P}ANDA$

- Set up of cluster source still ongoing
 - Integration in target frame
 - Implementing of spherical joint
 - Installation of gas modules
 - Setup of electronic rack
- Next steps:
 - Construction of transition vacuum chamber
 - Final installation of skimmer/collimator xy-tables
 - Design and construction of scattering chamber & beam dump

• ...

• First tests of vacuum & cooling system successful

Further studies

- Investigations on the cluster mass with MCP's
- Determination of the cluster size by Mie-scattering

The Cluster-Jet Target for PANDA

