Optical Cluster Beam Studies & Production of Laval Nozzles

Silke Grieser

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik $\overline{P}ANDA$ Meeting Jülich, December 10th 2014

Optical Cluster Beam Studies

Cluster-jet Target MCT1S

- A compact cluster-jet target was built up at Münster
 - $\bullet\,$ Cluster source of the first target prototype for $\overline{\mathrm{P}}\mathsf{ANDA}$
 - Cluster-jet target will be used for laser induced ion accelertion in cooperation with ILPP (M. Büscher)
 - Currently used for cluster beam studies (thickness, monitoring, position, stability...) $\mapsto \overline{P}\mathsf{ANDA}$

Interaction chamber

- Analysis of the cluster beam (position, relative thickness, stability, ...)
- 33 cm distance from the nozzle
- No possibility for movable rods (MCT2)
- CCD camera in combination with a dot laser
- Valuable for $\overline{P}ANDA$

Interaction chamber

- Analysis of the cluster beam (position, relative thickness, stability, ...)
- 33 cm distance from the nozzle
- No possibility for moveable rods (MCT2)
- CCD camera in combination with a dot laser
- Valuable for $\overline{\mathrm{P}}\mathsf{ANDA}$

Process of analysis

- Nozzle temperature: 22 K
- \bullet Gas pressure: 16 bar
- \bullet Exposure time: 15 $\rm s$

Cluster beam analysis Process of analysis

- Nozzle temperature: 22 K
- \bullet Gas pressure: 16 bar
- \bullet Exposure time: 15 $\rm s$

Cluster beam analysis Process of analysis

- $\bullet~$ Nozzle temperature: $22\,{\rm K}$
- $\bullet~\mbox{Gas}$ pressure: $16\,{\rm bar}$
- $\bullet~{\sf Exposure}$ time: $15\,{\rm s}$

Projections

Cluster beam analysis Projections

Cluster beam analysis Error Fit

•
$$p(x) = I_0 \cdot p_e(x - x_0) + I_U$$

with $p_e(x) =$

$$\int_{-\infty}^{\infty} dy \int_{x-\frac{d}{2}}^{x+\frac{d}{2}} \frac{1}{2} \left(1 - \operatorname{erf} \frac{r-R}{s}\right) dx$$

*I*₀: Height of the peak, intensity *x*₀: Position of the maximum *I*_U: Background *R*: Half peak width, radius *s*: Smearing factor $r = \sqrt{x^2 + y^2}$

$$erf(x) = rac{2}{\sqrt{\pi}} \int\limits_{0}^{x} e^{- au^2} d au$$

Cluster beam analysis Error Fit

$$p(x) = I_0 \cdot p_e(x - x_0) + I_U$$
 with $p_e(x) = \int_{-\infty}^{\infty} dy \int_{x - \frac{d}{2}}^{x + \frac{d}{2}} \frac{1}{2} \left(1 - erf \frac{r - R}{s}\right) dx$

Result of the measurement: intensity

Exposure time: $15 \, \mathrm{s}$

Result of the measurement: thickness

$\rho_T \propto \text{pressure increase}$

Production of new Laval nozzles Motivation

- Laval nozzle is the heart of a cluster source
- Specific convergent-divergent shape

- \bullet Production of a small inner diameter (< 30 $\mu m) \rightarrow$ a major technical challenge
- In the past these fine Laval nozzles were produced at CERN
- To ensure the production an improved production process based on the CERN production was recently developed at the University of Münster

Production process of the new Laval nozzles Negative of the trumpet

- Turned acrylic glass
- 30 to 60 µm at the narrowest point

Production process of the new Laval nozzles Body of the Laval nozzle

- Galvanic deposition of copper
- Chloroform to remove remainder of the acrylic glass
- Accurate and clean extraction of the trumpet negative

Production process of the new Laval nozzles The final shape of the nozzle

• The final shape is turned out of the nozzle body

Production process of the new Laval nozzles

- Cone bore by fine mechanical workshop of institute
- Connection lasered by company
- Production of ring to fix the nozzle at the target cold head

- Finished Laval nozzle of the first successfully produced set of 11 nozzles
- $\bullet\,$ Inner diameter between 42 μm and 105 μm
- Initial measurements with these new nozzles at the PANDA cluster-jet target prototype (27 K, 5 bar)

- Finished Laval nozzle of the first successfully produced set of 11 nozzles
- Inner diameter between 42 µm and 105 µm
- Initial measurements with these new nozzles at the PANDA cluster-jet target prototype (27 K, 5 bar)

Improvements

• Nozzle cut through by wire erosion

Improvements

- Drilling of the small inner diameter
 - Above: drill (800-times magnified)
 - Below: bore in aluminum (1500-times magnified)

[Rabensteiner Präzisionswerkzeuge]

- Drill by company "KERN"
 - \rightarrow 3 nozzles with inner diameter of about 30 μm
 - 5 Drill does not reach the opening cone

• Possible reasons: By the galvanic deposition the tip of the negative

- became skew
- got blunted

Summary & Outlook

Cluster beam studies

- Development of optical method for cluster beam studies
- Possibility to do precise online cluster beam analysis about position, intensity, thickness, size, ... without any affecting of the beam during the operation of the experiment

Production of Laval nozzles

- An improved production process was developed at the WWU Münster
- Initial measurements with new nozzles at the PANDA cluster-jet target prototype were performed
- Future investigations on the cluster production process to optimise the required target thickness
- \bullet More produced Laval nozzles and additional measurements at the $\overline{\mathsf{P}}\mathsf{ANDA}$ cluster-jet target prototype will follow