

HELMHOLTZ | GEMEINSCHAFT Helmholtz-Institut Mainz

Feasibility study of the rare decay $D^0 \rightarrow \gamma \gamma \& D^0 \rightarrow \mu^+ \mu^- \gamma$

Full & Fast MC simulation @ PANDA

Donghee Kang

Helmholtz Institut Mainz, Universität Mainz

PANDA collaboration meeting, Forschungszentrum Jülich, 10 Dec. 2014

- In Standard Model (SM), Flavor Changing Neutral Currents (FCNC) are forbidden at tree level and highly suppressed by GIM mechanism at loop level
- Search for the decay of $c \rightarrow u\gamma$ transition which has a sign of beyond SM If not seen, we can contribute to put constraints on new physics parameters
- FCNC rare decay $D^0 \rightarrow \gamma \gamma$ could be an opportunity to pursue with PANDA because electroweak channel involved photons allow a competition with LHCb

Sensitivity accessible @ PANDA?

Branching fraction

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

• Branching fraction of rare decay $D^0 \rightarrow \gamma \gamma$

Experimental result

HELMHOLTZ GEMEINSCHAFT

Experimental results (upper limit @ CL=90%)

BABAR : BR $< 2.2 \times 10^{-6}$ BESIII : BR $< 4.6 \times 10^{-6}$ CLEOc : BR $< 8.63 \times 10^{-6}$

BABAR (Phys. Rev. D 85, 091107(R) (2012))

• Measured $D^0 \rightarrow \pi^0 \pi^0$ branching fraction :

 $Br_{D^0 \to \pi^0 \pi^0} = (8.4 \pm 0.1 \pm 0.3) \times 10^{-4}$

• $D^0 \rightarrow \gamma \gamma$ found signal yield $N = -6 \pm 15$ events leading to an upper limit :

 $Br_{D^0 \to \gamma\gamma} < 2.2 \times 10^{-6}$

with using the associated(reference) $D^0 \rightarrow K_s \pi^0$ decay

Constraint NP to at most 70 times SM

Open charm cross section

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

How much charm can PANDA produce? A.Khodjamirian, Ch.Klein, Th.Mannel and Y.M. Wang Eur.Phys.J.A 48 (2012) 31. D⁰bar D⁰ production at pbar p collisions within a double handbag approach, A.T.Goritschnig, B.Pire and W.Schwieger, Phys.Rev.D87 (2013) 014017

BESIII suggested [arXiv:1403.6011v1 24 Mar 2014] two different solution for D^0D^0 cross section using the $\psi(3770) \rightarrow pbarp$

either $\sigma = (9.8 \pm 5.7)$ nb or $\sigma = (425.6 \pm 42.9)$ nb

HELMHOLTZ GEMEINSCHAF

Luminosity :
$$L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$
, $t = 120 \text{ days}$ (year)

Expected N : $N = L_{int} \times \sigma \times \varepsilon$ @ $\sqrt{s} = 3.770 (GeV/c^2)$

Number of signal $N_{D \to \gamma \gamma} = 2 \text{ fb}^{-1} \times 100 \text{ nb} \times \varepsilon_S \times Br$ $\leq 440 \times \varepsilon_S$

> with $Br(D^0 \rightarrow \gamma \gamma) < 2.2 \times 10^{-6}$ & $\sigma = 100 \text{ nb}$

Number of background $N_B = 2 \text{fb}^{-1} \times 60 \text{mb} \times \varepsilon_B$ $= 1.2 \times 10^{14} \times \varepsilon_B$

 $\frac{N_s}{N_B} = 0.01 \sim 1 \implies \text{Background reduction} = 10^{-10} \sim 10^{-12}$

$\overline{p}p \to D^0 \overline{D}^0 \to \gamma \gamma K^+ \pi^- (\text{Br} = 3.89\%)$

- PANDAroot release rev. scrut14

- − Signal MC : EvtGen
 Background MC : DPM
 Background MC : D⁰ → π⁰π⁰ EvtGen
- Pre-selection of track candidates Neutral track : E > 50 MeVCharged track : p > 100 MeV/c
- Exclusive measurement

In addition, two other tag modes are used

$$\overline{p}p \to D^0 \overline{D}^0 \to \gamma \gamma K^+ \pi^- \pi^0 (\text{Br} = 13.9\%)$$

$$\overline{p}p \to D^0 \overline{D}^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+ (\text{Br} = 8.09\%)$$

 $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \gamma \gamma K^+ \pi^-$

- Efficiency by event based (not candidate based)
- No DPM background up to 10^7 in the full simulation

- **1.479**×10¹¹ inelastic DPM event in the fast simulation

${ m D}^0 o \gamma\gamma$	Signal ε [%]	Bkg ε [%]	$D^0 \rightarrow K^+ \pi^-$	Signal ɛ [%]	Bkg ε [%]
$\begin{array}{l} P_t(\gamma) > 0.1 GeV/c^2 \\ P_t(D) < P_{t,max} + 0.2 GeV/c^2 \end{array}$	81.72	2.649	$P_t(K,\pi) > 0.1 GeV/c^2$ $P_t(D) < P_{t,max} + 0.2 GeV/c^2$	69.13	23.119
$\begin{array}{l} 100^{\circ} < \Delta \phi_{\gamma\gamma} < 260^{\circ} \\ 0.15 < P_{CM} < 0.4 \ GeV/c^2 \end{array}$	77.15	0.708	$100^{\circ} < \Delta \phi_{K\pi} < 260^{\circ}$ $0.15 < P_{CM} < 0.4 \text{ GeV/c}^2$	66.65	5.133
π^0 veto	58.34	0.018	PID Prob(π,K) > 0.25	45.26	0.064
size of ECAL crystal < 36	58.33	0.018	Mass constrain : $0 < \chi^2 < 10$	43.32	0.008
Mass constrain : $0 < \chi^2 < 10$	53.84	0.002			

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\gamma\gamma K^-\pi^+$	26.30	2.25×10 ⁻⁹
$130^\circ < \Delta \phi_{\rm DD} < 230^\circ$	25.96	1.78×10 ⁻⁹
$-0.99 < \cos\theta_{\rm CM} < 0.99$	25.78	1.76×10 ⁻⁹
4-Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	24.11	6.28×10 ⁻¹⁰

 $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \gamma \gamma K^+ \pi^- \pi^0$

- Efficiency by event based (not candidate based)
- No DPM background up to 10^7 in the full simulation

- **1.479**×10¹¹ inelastic DPM event in the fast simulation

${ m D}^0 o \gamma\gamma$	Signal ε [%]	Bkg ε [%]	$D^0 \rightarrow K^+ \pi^- \pi^0$	Signal ε [%]	Bkg ε [%]
$\begin{array}{l} P_t(\gamma) > 0.1 GeV/c^2 \\ P_t(D) < P_{t,max} + 0.2 GeV/c^2 \end{array}$	81.38	2.649	$\begin{array}{l} P_t(\gamma \ of \ \pi^0) \ < 1.0 \ GeV/c^2 \\ P_t(D) < P_{t,max} + 0.2 \ GeV/c^2 \end{array}$	43.41	42.184
$\begin{array}{l} 100^{\circ} < \Delta \phi_{\gamma\gamma} < 260^{\circ} \\ 0.15 < P_{CM} < 0.4 \ GeV/c^2 \end{array}$	76.53	0.708	$0.15 < P_{CM} < 0.45 \text{ GeV/c}^2$	39.84	22.910
$\theta_{open} > 50^{\circ}$	76.53	0.706	PID Prob(π,K) > 0.25	25.50	0.450
size of ECAL crystal < 36	76.53	0.706	Mass constrain : $0 < \chi^2 < 10$	22.16	0.066
Mass constrain : $0 < \chi^2 < 10$	69.06	0.078			

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\gamma\gamma K^+\pi^-\pi^0$	15.35	5.60×10 ⁻⁸
$130^\circ < \Delta \phi_{\rm DD} < 230^\circ$	15.08	3.53×10 ⁻⁸
$-0.99 < \cos\theta_{\rm CM} < 0.99$	14.98	3.50×10 ⁻⁸
4-Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	13.20	4.15×10 ⁻⁹

 $\overline{p}p \to D^0 \overline{D}{}^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+$

- Efficiency by event based (not candidate based)
- No DPM background up to 10^7 in the full simulation
- **1.479**×10¹¹ inelastic DPM event in the fast simulation

$D^0 \rightarrow \gamma \gamma$	Signal ε [%]	Bkg ε [%]	$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$	Signal ε [%]	Bkg ε [%]
$\begin{array}{l} P_t(\gamma) > 0.1 GeV/c^2 \\ P_t(D) < P_{t,max} + 0.2 GeV/c^2 \end{array}$	78.30	2.649	$P_t(D) < P_{t,max} + 0.2 \text{ GeV/c}^2$	30.03	14.014
$\begin{array}{l} 100^{\circ} < \Delta \phi_{\gamma\gamma} < 260^{\circ} \\ 0.15 < P_{CM} < 0.4 \ GeV/c^2 \end{array}$	73.79	0.708	$0.15 < P_{CM} < 0.5 \text{ GeV/c}^2$	27.72	7.733
π^0 veto	40.90	0.018	PID Prob(π,K) > 0.25	10.23	0.181
size of ECAL crystal < 36	40.90	0.018	Mass constrain : $0 < \chi^2 < 10$	8.17	0.029
Mass constrain : $0 < \chi^2 < 10$	37.92	0.002			

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\gamma\gamma K^+\pi^-\pi^-\pi^+$	4.06	2.61×10 ⁻⁹
$130^\circ < \Delta \phi_{DD} < 230^\circ$	3.98	1.71×10 ⁻⁹
$-0.99 < \cos\theta_{\rm CM} < 0.99$	3.95	1.68×10 ⁻⁹
4-Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	3.38	2.02×10 ⁻¹⁰

• PID loose to tight for all charged particle

Tag	All cuts	Signal efficiency	Background reduction	N _{Sig} / year	N _{Bkg} / year
$D^0 \rightarrow K^+ \pi^-$		0.241	6.28×10^{-10}	8.3	55012
$D^0 \rightarrow K^+ \pi^- \pi^0$	+ PID prob > 0.25	0.132	4.15×10^{-9}	16.1	363540
$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$		0.034	2.02×10^{-10}	2.4	17695
$D^0 \rightarrow K^+ \pi^-$		0.135	6.76×10^{-11}	4.6	5913
$D^0 \rightarrow K^+ \pi^- \pi^0$	+ PID prob > 0.90	0.071	2.90×10^{-10}	8.7	25404
$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$		0.005	<1.47 × 10 ⁻¹¹	0.3	0

1

Background event topology

• Events pass through the selection (based on 1.0×10^{11} DPM inelastic events)

	channel		channel		channel	
	$D^0\overline{D}{}^0 \to \gamma\gamma K^+$	π^{-}	$D^0\overline{D}{}^0 \to \gamma\gamma K^+ z$	$\pi^-\pi^0$	$D^0\overline{D}{}^0 \to \gamma\gamma K^+\pi^-$	$\pi^-\pi^+$
Mis- reconstructed events @ DPM	$\overline{p}p \to \pi^+ \pi^- 2\gamma$ $\overline{p}p \to \pi^+ \pi^- 4\gamma$	2 66	$\overline{p}p \rightarrow \pi^{+}\pi^{-}4\gamma$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}5\gamma$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}6\gamma$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}7\gamma$ $\overline{p}p \rightarrow \pi^{+}\pi^{-}8\gamma$	104 12 329 2 8	$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}3\gamma$ $\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}4\gamma$ $\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}5\gamma$	1 19 1

- Mis-identification of π^{\pm} as a K^{\pm} and combination of high energetic γ s can build same event signature
- Investigate most efficient way to reject those events

IELMHOLTZ

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

$\overline{p}p \to D^0 \overline{D}{}^0 \to \mu^+ \mu^- K^+ \pi^-$

NNES GUTENBERG

• Experimental results upper limit @ LHCb(2013) :

BR($D^0 \rightarrow \mu^+ \mu^-$) < 6.2 × 10⁻⁹

- Signal efficiency $\mathcal{E}_{tag}^{sig} = 0.158$
- Background rejection $\mathcal{E}_{tag}^{back} \sim 6.4 \times 10^{-12}$

• Sensitivity may not be accessible due to very small branching fraction $N_{D \to \mu\mu} = 0.011$ events with $\sigma = 100$ nb

 $\overline{p}p \to D^0 \overline{D}^0 \to \mu^+ \mu^- \gamma K^+ \pi^-$

Radiative B_c meson decays $B_c \rightarrow \gamma \overline{u}d$ A.K. Likhoded, A.V. Luchinsky, S.V. Poslavsky [Phys. Rev. D 90, 034017 (2014)]

- can remove the suppression, if one consider emission of additional γ
- possible to increases the branching fraction of B_c decay by factor 10^4

Same effect could be observed also in the case of $D^0 \rightarrow \mu^+\mu^-$ process

 $BR \le 6.2 \times 10^{-9} \quad \rightarrow \quad BR \le 6.2 \times 10^{-5}$

• phase space decay model for $D^0 \rightarrow \mu^+ \mu^- \gamma$

$D^0 \to \mu^+ \mu^- \gamma$	$\overline{D}^0 \rightarrow hadrons$			
$P_t(D) < P_{t,max} + 0.2GeV/c^2$	$P_t(\pi,K) > 0.1 \text{ GeV/c}^2 \text{ for } 2 \text{ body-decay}$			
$0.15 < P_{CM} < 0.4 \text{ GeV/c}^2$	$P_t(D) < P_{t,max} + 0.2 \text{ GeV/c}^2$			
# of ECAL crystal < 36	$P_t(\gamma \text{ from } \pi^0) < 1.0 \text{ GeV/c}^2$			
PID Prob(μ) > 0.25	$0.15 < P_{CM} < 0.4/0.45/0.5 \text{ GeV/c}^2$			
Muon chamber iron length > 10cm	$100^{\circ} < \Delta \phi_{\pi K} < 260^{\circ}$ for 2 body-decay			
Muon Layer ≥ 1	PID Prob(π ,K) > 0.25			
Mass constrain : $0 < \chi^2 < 10$	Mass constrain : $0 < \chi^2 < 10$			
$\overline{p}p \to D^0 \overline{D}{}^0$				
$130^\circ < \Delta \phi_{ m DD} < 230^\circ$				
$-0.99 < \cos \theta_{\rm CM} < 0.99$				
4-Constrain kinematic fit: $0 < \chi^2 < 2$	20, only 1 best candidate by minimum χ^2			

Helmholtz-Institut Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

HELMHOLTZ

Background reduction

• PID loose to tight for all charged particle

Tag	All cuts	Signal efficiency	Background reduction	N _{Sig} / year	N _{Bkg} / year
$D^0 \rightarrow K^+ \pi^-$		0.0529	5.40×10^{-11}	8.2	4736
$D^0 \rightarrow K^+ \pi^- \pi^0$	+ PID prob > 0.25	0.0244	1.14×10^{-10}	13.6	10065
$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$		0.0055	1.35×10^{-11}	1.8	1184
$D^0 \rightarrow K^+ \pi^-$		0.0269	<1.47× 10 ⁻¹¹	4.2	0
$D^0 \rightarrow K^+ \pi^- \pi^0$	+ PID prob > 0.90	0.0117	<1.47× 10 ⁻¹¹	6.5	0
$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$		0.0006	<1.47× 10 ⁻¹¹	0.2	0
$N_{D \to \gamma\gamma} = 2 \text{ fb}^{-1} \times 100 \text{ nb} \times \Sigma(Br_i) \times \varepsilon_{tag} \times 2 \leqslant$					

 $N_{D \to \gamma\gamma} = 2 \mathrm{fb}^{-1} \times 43.8 \mathrm{mb} \times \varepsilon_B$

An estimation for rare open charm decay has been made

- Other models for $D^0\overline{D^0}$ cross section could be larger than $\sigma_{DD} > 100 \text{ nb}$ e.g. BESIII second solution : $\sigma_{DD} = 486 \text{ nb}$
- Necessary further background reduction : remains one order of magnitude
- Above E=3.77 GeV, there are other considerable channels

$$\overline{p}p \to D^{0}\overline{D}^{0} \to \gamma\gamma K_{S}^{0}\pi^{+}\pi^{-}(\text{Br} = 2.94\%)$$

$$\overline{p}p \to D^{0*}\overline{D}^{0} \to D^{0}\pi^{0}(\gamma) + \overline{D}^{0}$$

$$\overline{p}p \to D^{0}\overline{D}^{0*} \to D^{0} + \overline{D}^{0}\pi^{0}(\gamma)$$

$$\overline{p}p \to D^{0*}\overline{D}^{0*} \to D^{0}\pi^{0}(\gamma) + \overline{D}^{0}\pi^{0}(\gamma)$$

• Phase space models \rightarrow physics models for gamma

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Backup

• Apply p_{CM} cut to D^0 candidates :

introduced cut in the application of online software trigger

FI MHOLTZ

events only within the D^0 or $\overline{D^0}$ mass window $\pm 5\sigma$

• Mass constraint fit \rightarrow 4 constraint fit for $\overline{p}p \rightarrow D^0 \overline{D}^0$ background reduction improve at least one order of magnitude

Upper limit for FCNC D⁰ decays

JOHANNES GUTENBERG

UNIVERSITÄT MAIN

Report from Heavy Flavor Averaging Group (HFAG) arXiv:2307.1158

 $\overline{p}p \to D^0 \overline{D}{}^0 \to \mu^+ \mu^- \gamma K^+ \pi^-$

- Efficiency by event based (not candidate based)
- No DPM background up to 10^7 in the full simulation
- **1.479**×10¹¹ inelastic DPM event in the fast simulation

$\mathrm{D}^{0} ightarrow \mu^{+} \mu^{-} \gamma$	Signal ε [%]	Bkg ε [%]	$\mathrm{D}^{0} ightarrow \mathrm{K}^{+} \pi^{-}$	Signal ɛ [%]	Bkg ε [%]
$P_t(D) < P_{t,max} + 0.2 GeV/c^2$	89.25	40.3570	$P_t(K,\pi) > 0.1 GeV/c^2$ $P_t(D) < P_{t,max} + 0.2 GeV/c^2$	75.95	23.1191
$0.15 < P_{CM} < 0.4 \text{ GeV/c}^2$	82.09	14.7828	$\begin{array}{l} 100^{\circ} < \Delta \varphi_{K\pi} < 260^{\circ} \\ 0.15 < P_{CM} < 0.4 \ GeV/c^2 \end{array}$	66.34	5.1334
MDT iron length > 10cm size of ECAL crystal < 36	26.16	0.1104	PID Prob(π,K) > 0.25	39.74	0.0646
# of muon layer > 0 PID Prob (π, K) > 0.25	19.34	0.0039	Mass constrain : $0 < \chi^2 < 10$	36.97	0.0082
Mass constrain : $0 < \chi^2 < 10$	16.57	0.0006			

$\overline{\bigcirc}$

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\mu^+\mu^-\gamma K^+\pi^-$	6.01	1.21×10 ⁻¹⁰
$130^\circ < \Delta \phi_{ m DD} < 230^\circ$	5.91	8.92×10 ⁻¹¹
$-0.99 < \cos \theta_{\rm CM} < 0.99$	5.87	8.92×10 ⁻¹¹
4Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	5.29	4.87×10 ⁻¹¹

 $\overline{p}p \to D^0 \overline{D}{}^0 \to \mu^+ \mu^- \gamma K^+ \pi^- \pi^0$

- Efficiency by event based (not candidate based)
- No DPM background up to 10^7 in the full simulation

- **1.479**×10¹¹ inelastic DPM event in the fast simulation

${ m D}^0 ightarrow \mu^+ \mu^- \gamma$	Signal ɛ %	Bkg ε [%]	$\mathrm{D}^{0} ightarrow \mathrm{K}^{+} \pi^{-} \pi^{0}$	Signal ε [%]	Bkg ε [%]
$P_t(D) < P_{t,max} + 0.2 GeV/c^2$	85.91	40.3570	$\begin{array}{l} P_t(\gamma \ of \ \pi^0) \ < 1.0 \ GeV/c^2 \\ P_t(D) < P_{t,max} + 0.2 \ GeV/c^2 \end{array}$	64.78	42.1840
$0.15 < P_{CM} < 0.4 \text{ GeV/c}^2$	77.25	14.7828	$0.15 < P_{CM} < 0.45 \text{ GeV/c}^2$	53.82	22.9107
MDT iron length > 10cm size of ECAL crystal < 36	25.50	0.1104	PID Prob(π,K) > 0.25	25.02	0.4501
# of muon layer > 0 PID Prob(π,K) > 0.25	19.13	0.0038	Mass constrain : $0 < \chi^2 < 10$	20.24	0.0662
Mass constrain : $0 < \chi^2 < 10$	16.09	0.0006			

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\mu^+\mu^-\gamma K^+\pi^-\pi^0$	15.35	8.27×10 ⁻¹⁰
$130^\circ < \Delta \phi_{ m DD} < 230^\circ$	15.08	5.91×10 ⁻¹⁰
$-0.99 < \cos \theta_{\rm CM} < 0.99$	14.98	5.91×10 ⁻¹⁰
4Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	13.20	1.29×10 ⁻¹⁰

 $\overline{p}p \to D^0 \overline{D}{}^0 \to \mu^+ \mu^- \gamma K^+ \pi^- \pi^- \pi^+$

- Efficiency by event based (not candidate based)
 No DPM background up to 10⁷ in the full simulation
- -1.479×10^{11} inelastic DPM event in the fast simulation

$D^0 \rightarrow \mu^+ \mu^- \gamma$	Signal ε [%]	Bkg ε [%]	$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$	Signal ɛ [%]	Bkg ε [%]
$P_t(D) < P_{t,max} + 0.2 GeV/c^2$	78.08	40.3570	$P_t(D) < P_{t,max} + 0.2 \text{ GeV/c}^2$	48.49	14.0144
$0.15 < P_{CM} < 0.4 \text{ GeV/c}^2$	63.69	14.7828	$0.15 < P_{CM} < 0.5 \text{ GeV/c}^2$	38.48	7.7332
MDT iron length > 10cm size of ECAL crystal < 36	21.61	0.1104	PID Prob $(\pi, K) > 0.25$	9.19	0.1812
# of muon layer > 0 PID Prob (π, K) > 0.25	16.64	0.0038	Mass constrain : $0 < \chi^2 < 10$	6.28	0.0290
Mass constrain : $0 < \chi^2 < 10$	13.31	0.0006			

$pp \rightarrow D^0 D^0$	Signal ε [%]	Bkg ε
Combine $\mu^+\mu^-\gamma K^+\pi^-\pi^-\pi^+$	4.06	3.81×10 ⁻¹⁰
$130^\circ < \Delta \phi_{\mathrm{DD}} < 230^\circ$	3.98	3.08×10 ⁻¹⁰
$-0.99 < \cos \theta_{\rm CM} < 0.99$	3.95	3.08×10 ⁻¹⁰
4Constrain kinematic fit : $0 < \chi^2 < 20$ Only 1 best candidate by minimum χ^2	3.38	1.62×10 ⁻¹¹

Background rejection

 $-p_T > 0.1$ (GeV/c) for γ

ANNES GUTENBERG

UNIVERSITÄT

 $-p_T < p_T^{\text{max}} + 0.2 (\text{GeV/c}) \text{ for } D^0$

$$p_T^{\max}(\sqrt{s};m) = \frac{\sqrt{s^2 - 4 \cdot s \cdot m^2}}{2\sqrt{s}}$$

Angular correlation of $\gamma\gamma$

NNES GUTENBERG

UNIVERSITÄT

Background rejection

 π^0 veto : reject events in which one of the photons can be combined with any other photon candidate in the event to form a π^0

ELMHOLTZ

Lower threshold (E= 50 MeV) is more efficient than higher value for π^0 veto

-0.5

0.5

Background rejection

INES GUTENBERG

UNIVERSITÄT

