Searching for a hidden-beauty counterpart to the $\mathrm{X}(3872)$ at ATLAS

Bruce Yabsley

ATLAS / University of Sydney
ARC Centre of Excellence for Particle Physics at the Terascale (http://www.coepp.org.au/)

P̄ANDA Collaboration Meeting 10th December 2014, FZ Jülich

ARC Centre of Excellence for Particle Physics at the Terascale

Outline

(1) The $X(3872)$ and the " X_{b} "
(2) Quarkonium studies at ATLAS
(3) The X_{b} search

- $X_{\mathrm{b}} \rightarrow \pi^{+} \pi^{-} \Upsilon\left(\rightarrow \mu^{+} \mu^{-}\right)$reconstruction
- discrimination in $\left(|y|, p_{T}, \cos \theta^{*}\right)$
- background and signal modelling
- calibration and validation
- results as a function of mass
(4) Bonus searches: $\Upsilon\left(1^{3} D_{\jmath}\right), \Upsilon(10860)$, and $\Upsilon(11020)$
(5) Interpretation, and future plans
(6) Summary

The $\mathrm{X}(3872)$ and the " X_{b} "

The $X(3872)$ is the first (2003) \& best-studied (>25 exp $^{\text {tal }}$ papers) of the new hidden-charm states seen in the last decade.

- $\pi \pi \psi$ [discovery] \& other decays
- narrow: 「 < $1.2 \mathrm{MeV}, 90 \%$ C.L.
- $J^{P C}=1^{++}\left(2^{-+}\right.$finally excluded $)$
- direct $p \bar{p} \& p p$ production seen
- very poor match to $c \bar{c}$ structure

- very close to $D^{* 0} \bar{D}^{0}$ threshold:
- $D^{* 0} \bar{D}^{0}$ molecule, very weak $E_{b} \approx \frac{1}{10} E_{b}\left({ }^{2} H\right)$?
- \exists tetraquark, other models
- heavy-flavour symmetry: expect a hidden-beauty analogue

Quarkonium studies at ATLAS: the detector

huge, complex, multi-purpose detector optimized for a range of high- p_{T} discovery physics in $\sqrt{s}=14 \mathrm{TeV} p p$ collisions

Quarkonium studies at ATLAS: the detector

for our special purposes, ATLAS is a large $\{$ Si pixel, Si strip, TRT\} vertexing and tracking system, surrounded by trigger and muon ID

Quarkonium studies at ATLAS: trigger conditions

- rate limited by trigger bandwidth, especially at Level 1 (hardware)
- B-physics \& onia: high- $p_{T} \mu, M(\mu \mu)$-restricted-dimuon, ... triggers
- increasing $\mathcal{L} \longrightarrow$ higher- p_{T} triggers, prescaling, ...

Quarkonium studies at ATLAS: trigger conditions

- rate limited by trigger bandwidth, especially at Level 1 (hardware)
- B-physics \& onia: high- $p_{T} \mu, M(\mu \mu)$-restricted-dimuon, ... triggers
- increasing $\mathcal{L} \longrightarrow$ higher- p_{T} triggers, prescaling, ...

Quarkonium at ATLAS: acceptance for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

for a given $\left(|y|, p_{T}\right)$, \mathcal{A} is the probability that both muons fall within the fiducial volume:

- $p_{T}^{\mu}>4 \mathrm{GeV}$
- $\left|\eta^{\mu}\right|<2.3$

4 GeV trigger thresholds \longrightarrow pronounced structure straightforward extension to $\pi^{+} \pi^{-} \mu^{+} \mu^{-}$and more complex final states

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

$$
\text { for }\left(J^{P C}=1^{--}\right)|V\rangle=b_{+1}|+1\rangle+b_{-1}|-1\rangle+b_{0}|0\rangle \text { decaying } \rightarrow \ell^{+} \ell^{-}
$$

- the angular distribution $W(\cos \vartheta, \varphi)$

$$
\begin{aligned}
& \propto \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta\right. \\
& +\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi \\
& \left.+\lambda_{\varphi}^{\perp} \sin ^{2} \vartheta \sin 2 \varphi+\lambda_{\vartheta \varphi}^{\perp} \sin 2 \vartheta \sin \varphi\right)
\end{aligned}
$$

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

$$
\text { for }\left(J^{P C}=1^{--}\right)|V\rangle=b_{+1}|+1\rangle+b_{-1}|-1\rangle+b_{0}|0\rangle \text { decaying } \rightarrow \ell^{+} \ell^{-}
$$

- the angular distribution $W(\cos \vartheta, \varphi)$

$$
\begin{aligned}
& \propto \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta\right. \\
& +\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi \\
& \left.+\lambda_{\varphi}^{\perp} \sin ^{2} \vartheta \sin 2 \varphi+\lambda_{\vartheta \varphi}^{\perp} \sin 2 \vartheta \sin \varphi\right)
\end{aligned}
$$

- inclusive production: p_{1}, p_{2}, and V only;
 we (\sim must) choose (x, z) : production plarre

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

$$
\text { for }\left(J^{P C}=1^{--}\right)|V\rangle=b_{+1}|+1\rangle+b_{-1}|-1\rangle+b_{0}|0\rangle \text { decaying } \rightarrow \ell^{+} \ell^{-}
$$

- the angular distribution $W(\cos \vartheta, \varphi)$

$$
\begin{aligned}
& \propto \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta\right. \\
& +\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi \\
& \left.+\lambda_{\varphi}^{\perp} \sin ^{2} \vartheta \sin 2 \varphi+\lambda_{\vartheta \varphi}^{\perp} \sin 2 \vartheta \sin \varphi\right)
\end{aligned}
$$

- inclusive production: p_{1}, p_{2}, and V only;
 we (\sim must) choose (x, z) : production plane
- reflection-odd terms unobservable (parity)

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

$$
\text { for }\left(J^{P C}=1^{--}\right)|V\rangle=b_{+1}|+1\rangle+b_{-1}|-1\rangle+b_{0}|0\rangle \text { decaying } \rightarrow \ell^{+} \ell^{-}
$$

- the angular distribution $W(\cos \vartheta, \varphi)$

$$
\begin{aligned}
& \propto \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta\right. \\
& +\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi \\
& \left.+\lambda_{\varphi}^{\frac{1}{4}} \sin ^{2} \vartheta \sin 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \sin \varphi\right)
\end{aligned}
$$

- inclusive production: p_{1}, p_{2}, and V only;
 we (\sim must) choose (x, z) : production plarre
- reflection-odd terms unobservable (parity)

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

$$
\text { for }\left(J^{P C}=1^{--}\right)|V\rangle=b_{+1}|+1\rangle+b_{-1}|-1\rangle+b_{0}|0\rangle \text { decaying } \rightarrow \ell^{+} \ell^{-}
$$

- the angular distribution $W(\cos \vartheta, \varphi)$

$$
\begin{aligned}
& \propto \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta\right. \\
& +\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi \\
& \left.+\lambda_{\varphi}^{\frac{1}{2}} \sin ^{2} \vartheta \sin 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \sin \varphi\right)
\end{aligned}
$$

- inclusive production: p_{1}, p_{2}, and V only;
 we (\sim must) choose (x, z) : production plarre
- reflection-odd terms unobservable (parity)
- full angular distributions $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)$ in general needed...

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

 Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°

Quarkonium at ATLAS: polarization for $\mathrm{V} \rightarrow \mu^{+} \mu^{-}$

 Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$

Quarkonium at ATLAS: polarization for $\mathrm{V} \rightarrow \mu^{+} \mu^{-}$

 Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal dist ${ }^{n}$ (d) looks like

Quarkonium at ATLAS: polarization for $\mathrm{V} \rightarrow \mu^{+} \mu^{-}$

 Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal dist ${ }^{n}$ (d) looks like transverse dist ${ }^{n}$ (a)

Quarkonium at ATLAS: polarization for $\mathrm{V} \rightarrow \mu^{+} \mu^{-}$

 Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657-673 (2010)- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal dist ${ }^{n}$ (d) looks like transverse dist ${ }^{n}$ (a)
- λ_{ϑ}-only measurements (à la TeVatron Run I) can't be compared without assumptions about pol ${ }^{n}$ frame

Quarkonium at ATLAS: polarization for $\mathrm{V} \rightarrow \mu^{+} \mu^{-}$

- L: polarized $\left\{\begin{array}{l}\text { transversely } \\ \text { longitudinally }\end{array}\right.$
- R: meas ${ }^{t}$ frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal dist ${ }^{n}$ (d) looks like transverse dist ${ }^{n}$ (a)
- λ_{ϑ}-only measurements (à la TeVatron Run I) can't be compared without assumptions about pol ${ }^{n}$ frame
- experimental acceptance is also
 typically a f^{n} of $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)$

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

Sandro Palestini, Physical Review D 83, 031503(R) (2011)

- limited range of $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)$ values allowed

Quarkonium at ATLAS: polarization for $\mathbf{V} \rightarrow \mu^{+} \mu^{-}$

Sandro Palestini, Physical Review D 83, 031503(R) (2011)

- limited range of $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)$ values allowed
- LHC experiments quote results for each of a set of working points

Quarkonium at ATLAS: acceptance $\mathcal{A}\left(|y|, p_{T} ; ~ F L A T\right)$

 $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)$\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)=$
$\left(\begin{array}{lll}0, & 0, & 0\end{array}\right)$
unpolarized production

Quarkonium at ATLAS: acceptance $\mathcal{A}\left(|y|\right.$, $\mathbf{p}_{\text {т }} ;$ LONG $)$

$\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)=$ $(-1, \quad 0,0)$ polarization: longitudinal along z

Quarkonium at ATLAS: acceptance $\mathcal{A}\left(|y|, p_{T} ; T+0\right)$

$\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)=$ $(+1, \quad 0, \quad 0)$ polarization: transverse along z

Quarkonium at ATLAS: acceptance $\mathcal{A}\left(|\mathrm{y}|, \mathrm{p}_{\mathrm{T}} ; \mathbf{T}++\right)$

$\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)=$ $(+1,+1, \quad 0)$ polarization: longitudinal along y

Quarkonium at ATLAS: acceptance $\mathcal{A}\left(|y|, p_{\top} ; \mathbf{T}+-\right)$

$$
\begin{aligned}
& \left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)= \\
& (+1,-1, \quad 0)
\end{aligned}
$$

polarization: longitudinal along x

Quarkonium at ATLAS: acceptance spread

maximum variation betw. the $\left(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}\right)$ working points
note:
CMS measurements are consistent with unpolarized production of the $\Upsilon(1 S, 2 S, 3 S)$ PRL 110, 081802 (2013)

Spread ATLAS

The X_{b} search: outline

The $\pi^{+} \pi^{-} \Upsilon(1 \mathrm{~S})\left(\right.$ c.f. $\left.\pi^{+} \pi^{-} \mathrm{J} / \psi\right)$ channel provides an experimentally feasible search option:

1. Reconstruct $X_{b} \rightarrow \pi^{+} \pi^{-} \Upsilon(\mu \mu)$ using large ATLAS $\Upsilon(\mu \mu)$ sample
2. Either observe X_{b} at mass M with significance z , or
3. Set upper limits for $X_{b} \rightarrow \pi^{+} \pi^{-} \Upsilon(\mu \mu)$ production
4. Also look for $\Upsilon\left(1^{3} D_{J}\right), \Upsilon(10860)$, and $\Upsilon(11020)$ decays
$\mathrm{X}_{\mathrm{b}} \rightarrow \pi^{+} \pi^{-} \Upsilon\left(\rightarrow \mu^{+} \mu^{-}\right)$reconstruction ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]

I. Find $\Upsilon \rightarrow \mu^{+} \mu^{-}$candidates:

- $\mathrm{p}_{\mathrm{T}}(\mu)>4 \mathrm{GeV} \Upsilon$ trigger
" two "combined" μ tracks
- $|\eta(\mu)|<2.3$
- $\left|\mathrm{m}(\mu \mu)-\mathrm{m}_{1 \mathrm{~S}}\right|<350 \mathrm{MeV}$

$\mathrm{X}_{\mathrm{b}} \rightarrow \pi^{+} \pi^{-} \Upsilon\left(\rightarrow \mu^{+} \mu^{-}\right)$reconstruction ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]
I. Find $\Upsilon \rightarrow \mu^{+} \mu^{-}$candidates:
- $\mathrm{p}_{\mathrm{T}}(\mu)>4 \mathrm{GeV} \Upsilon$ trigger
" two "combined" μ tracks
- $|\eta(\mu)|<2.3$
- $\left|\mathrm{m}(\mu \mu)-\mathrm{m}_{1 \mathrm{~S}}\right|<350 \mathrm{MeV}$
II. Add two tracks ($\pi \pi$):
= $\mathrm{p}_{\mathrm{T}}(\pi)>400 \mathrm{MeV}$
- $|\eta(\pi)|<2.5$
- 4-track vertex fit
- $m(\mu \mu)=m_{1 S}$ constraint
- $\quad \chi^{2}<20$
- masses $<11.2 \mathrm{GeV}$

The X_{b} search: discrimination in $\left(|\mathrm{y}|, \mathrm{p}_{\mathrm{T}}, \cos \theta^{*}\right)$

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- barrel $(|y|<1.2)$ resolut ${ }^{n}$ better than endcap (1.2 $\left.<|y|<2.4\right)$
- constraint $\mu^{+} \mu^{-} \rightarrow \Upsilon$ mitigates this, but not higher bkgd under peak
- unknown X_{b} mass: $\pi \pi$ effect on $m(\pi \pi \Upsilon)$ resolution can't be removed \longrightarrow perform the analysis in bins of rapidity

BARREL

ENDCAP

The X_{b} search: discrimination in $\left(|y|, \mathrm{p}_{\mathrm{T}}, \cos \theta^{*}\right)$

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- barrel $(|y|<1.2)$ resolut n better than endcap $(1.2<|y|<2.4)$ \longrightarrow perform the analysis in bins of rapidity
- different signal and background distributions in $\left(p_{\mathrm{T}}, \cos \theta^{*}\right)$:
- $\cos \theta^{*}\left(\pi^{+} \pi^{-}\right)$flat in parent rest frame for unpolarized signal
- in background, $\pi^{+} \pi^{-}$unrelated to $\mu^{+} \mu^{-}$, and has low $p_{T}^{\pi \pi}$ \longrightarrow background is lower in p_{T}, more backward in $\cos \theta^{*}$

X_{b} rest frame
 $\pi \pi$

[classic discrimination by decay angle for (quasi-)2-body decays]

The X_{b} search: discrimination in $\left(|\mathrm{y}|, \mathrm{p}_{\mathrm{T}}, \cos \theta^{*}\right)$

- barrel $(|y|<1.2)$ resolut n better than endcap $(1.2<|y|<2.4)$
\longrightarrow perform the analysis in bins of rapidity
- different signal and background distributions in $\left(p_{\mathrm{T}}, \cos \theta^{*}\right)$:
- $\cos \theta^{*}\left(\pi^{+} \pi^{-}\right)$flat in parent rest frame for unpolarized signal
- in background, $\pi^{+} \pi^{-}$unrelated to $\mu^{+} \mu^{-}$, and has low $p_{T}^{\pi \pi}$
\longrightarrow background is lower in p_{T}, more backward in $\cos \theta^{*}$
- trigger threshold effects
\longrightarrow distributions change but discrimination remains

BACKGROUND

The X_{b} search: discrimination in $\left(|\mathrm{y}|, \mathrm{p}_{\mathrm{T}}, \cos \theta^{*}\right)$

- barrel $(|y|<1.2)$ resolut n better than endcap $(1.2<|y|<2.4)$ \longrightarrow perform the analysis in bins of rapidity
- different signal and background distributions in $\left(p_{\mathrm{T}}, \cos \theta^{*}\right)$:
- $\cos \theta^{*}\left(\pi^{+} \pi^{-}\right)$flat in parent rest frame for unpolarized signal
- in background, $\pi^{+} \pi^{-}$unrelated to $\mu^{+} \mu^{-}$, and has low $p_{T}^{\pi \pi}$
\longrightarrow background is lower in p_{T}, more backward in $\cos \theta^{*}$
- trigger threshold effects
\longrightarrow distributions change but discrimination remains

we chose bin boundaries at $\left(p_{T}, \cos \theta^{*}\right)=(20 \mathrm{GeV}, 0)$ \longrightarrow simult. fit to $2 \times 2 \times 2$ bins in $\left(|y|, p_{T}, \cos \theta^{*}\right)$:
considered ΔR cut [CMS]: less sensitive than binning
ΔR cut à la CMS

$$
S / \sqrt{B}
$$

The X_{b} search: background and signal modelling

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]
background:

- mix of inclusive $\Upsilon(1 S)$ and combinatorial $\mu^{+} \mu^{-}$
- preliminary studies performed on $2011(7 \mathrm{TeV})$ data: lower-sideband $\mu^{+} \mu^{-}$and same-sign $\mu^{ \pm} \mu^{ \pm}$samples
- $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ distributions featureless above 9800 MeV
- confirmed in $\Upsilon \rightarrow \mu^{+} \mu^{-}$signal region for various $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ ranges
\longrightarrow polynomial fit to $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ region about each test mass

The X_{b} search: background and signal modelling

background:

- mix of inclusive $\Upsilon(1 S)$ and combinatorial $\mu^{+} \mu^{-}$
- preliminary studies performed on $2011(7 \mathrm{TeV})$ data: lower-sideband $\mu^{+} \mu^{-}$and same-sign $\mu^{ \pm} \mu^{ \pm}$samples
- $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ distributions featureless above 9800 MeV
- confirmed in $\Upsilon \rightarrow \mu^{+} \mu^{-}$signal region for various $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ ranges
\longrightarrow polynomial fit to $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ region about each test mass signal:
- narrow state search: fit with $\mathbf{f} \cdot \mathcal{G}(\mathbf{m}, \sigma)+(\mathbf{1}-\mathbf{f}) \cdot \mathcal{G}(\mathbf{m}, \mathbf{r} \sigma)$
- $f, r \sim$ indep t of mass; fixed to average over MC samples
- σ then found to be linear in mass
- remaining issues: division among analysis bins, acceptance, efficiency

The X_{b} search: background and signal modelling

background:

- mix of inclusive $\Upsilon(1 S)$ and combinatorial $\mu^{+} \mu^{-}$
- preliminary studies performed on $2011(7 \mathrm{TeV})$ data: lower-sideband $\mu^{+} \mu^{-}$and same-sign $\mu^{ \pm} \mu^{ \pm}$samples
- $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ distributions featureless above 9800 MeV
- confirmed in $\Upsilon \rightarrow \mu^{+} \mu^{-}$signal region for various $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ ranges
\longrightarrow polynomial fit to $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ region about each test mass signal:
- narrow state search: fit with $\mathbf{f} \cdot \mathcal{G}(\mathbf{m}, \sigma)+(\mathbf{1}-\mathbf{f}) \cdot \mathcal{G}(\mathbf{m}, \mathbf{r} \sigma)$
- $f, r \sim$ indep t of mass; fixed to average over MC samples
- σ then found to be linear in mass
- remaining issues: division among analysis bins, acceptance, efficiency - all depend on distribution of final-state particles in ($\left.\eta, p_{T}, \phi\right)$

The X_{b} search: background and signal modelling

 rely on $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

The X_{b} search: background and signal modelling

 rely on $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

- extend $y \rightarrow 2.4$ (assumption), $p_{T} \rightarrow 100 \mathrm{GeV}$ (CMS), $\sqrt{s} \rightarrow 8 \mathrm{TeV}$ (Pythia)

The X_{b} search: background and signal modelling

 rely on $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

- extend $y \rightarrow 2.4$ (assumption), $p_{T} \rightarrow 100 \mathrm{GeV}$ (CMS), $\sqrt{s} \rightarrow 8 \mathrm{TeV}$ (Pythia)
- assume (for now) that X_{b} production

The X_{b} search: background and signal modelling

 rely on $\Upsilon(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

- extend $y \rightarrow 2.4$ (assumption), $p_{T} \rightarrow 100 \mathrm{GeV}$ (CMS), $\sqrt{s} \rightarrow 8 \mathrm{TeV}$ (Pythia)
- assume (for now) that X_{b} production
- is $\Upsilon(2 S, 3 S)$-like [inter/extrapolate results according to mass]

The X_{b} search: background and signal modelling

 rely on $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

- extend $y \rightarrow 2.4$ (assumption), $p_{T} \rightarrow 100 \mathrm{GeV}$ (CMS), $\sqrt{s} \rightarrow 8 \mathrm{TeV}$ (Pythia)
- assume (for now) that X_{b} production
- is $\Upsilon(2 S, 3 S)$-like [inter/extrapolate results according to mass]
- is unpolarized [given parent $\left(y, p_{T}\right)$, determines $\left(\eta, p_{T}\right)$ of products]

The X_{b} search: background and signal modelling

rely on $\uparrow(\mathrm{nS})$ cross-section measurement; ATLAS Collab., PRD 87, 052004 (2013)

- use measured doubly-differential $\sigma \times \mathcal{B}$ for $\Upsilon(1 S, 2 S, 3 S) \rightarrow \mu^{+} \mu^{-}$

- extend $y \rightarrow 2.4$ (assumption), $p_{T} \rightarrow 100 \mathrm{GeV}$ (CMS), $\sqrt{s} \rightarrow 8 \mathrm{TeV}$ (Pythia)
- assume (for now) that X_{b} production
- is $\Upsilon(2 S, 3 S)$-like [inter/extrapolate results according to mass]
- is unpolarized [given parent $\left(y, p_{T}\right)$, determines $\left(\eta, p_{T}\right)$ of products] $\longrightarrow\left\{\right.$ division among bins, acceptance, efficiency\} as functions of $m\left(X_{b}\right)$

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

(1) fit in $2|y|$ bins, floated params: m matches w.a.; σ matches MC

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

(1) fit in $2|y|$ bins, floated params: m matches w.a.; σ matches MC
(2) separate fits in $2 \times 2 \times 2$ bins in $\left(|y|, p_{\mathrm{T}}, \cos \theta^{*}\right)$, fixed params:

- barrel fraction 0.67 ± 0.04 exceeds MC value 0.606 ± 0.004
- in all subsequent fits, MC barrel fractions rescaled by $0.67 / 0.606$
- division of signal among $2 \times 2 \times 2$ bins consistent with rescaled MC
- sum of the eight yields:

$$
N_{2 S}^{f i t}=34300 \pm 800
$$

$$
N_{2 S}^{\text {pred }}=(\sigma \mathcal{B})_{2 S} \cdot \mathcal{L} \cdot \mathcal{A} \cdot \epsilon
$$

$$
=(0.504 \pm 0.038) \mathrm{nb} \cdot(16.2 \pm 0.3) \mathrm{fb}^{-1} \cdot(1.442 \pm 0.004) \% \cdot(0.283 \pm 0.002)
$$

$$
=33300 \pm 2500
$$

- all subsequent fits are performed
- simultaneously over the $2 \times 2 \times 2$ bins
- using the division of signal between the bins (as a function of mass) determined from MC

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]

- $p_{T}>20 \mathrm{GeV}, \cos \theta^{*}>0$ (most sensitive bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

- $p_{T}>20 \mathrm{GeV}, \cos \theta^{*}<0$ (top-left bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

- $p_{T}<20 \mathrm{GeV}, \cos \theta^{*}>0$ (bottom-right bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(2 S)$

ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]

- $p_{T}<20 \mathrm{GeV}, \cos \theta^{*}<0$ (least sentitive bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(3 \mathrm{~S})$

(3) simultaneous fit to $2 \times 2 \times 2$ bins with fixed params:

- strong but not overwhelming signal: model for X_{b} search
- significance $z=8.7$
- most sensitive bin $z=6.5 \longrightarrow$: (for clarity: rebinned $2 \rightarrow 8 \mathrm{MeV}$)
- $\chi^{2} / n_{\text {dof }}=1.0$ for simult. fit: good signal division among bins
- overall fitted yield:

$$
\begin{aligned}
N_{3 S}^{\text {fit }} & =11600 \pm 1300 \\
N_{3 S}^{\text {pred }} & =(\sigma \mathcal{B})_{3 S} \cdot \mathcal{L} \cdot \mathcal{A} \cdot \epsilon \\
& =11400 \pm 1500
\end{aligned}
$$

BARREL, HIGH- $p_{T}, \mathrm{HIGH}-\cos \theta^{*}$

The X_{b} search: calibration and validation: $\Upsilon(3 S)$

- $p_{T}>20 \mathrm{GeV}, \cos \theta^{*}>0$ (most sensitive bin):

BARREL

The X_{b} search: calibration and validation: $\Upsilon(3 S)$

- $p_{T}>20 \mathrm{GeV}, \cos \theta^{*}<0$ (top-left bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(3 S)$

- $p_{T}<20 \mathrm{GeV}, \cos \theta^{*}>0$ (bottom-right bin):

BARREL

ENDCAP

The X_{b} search: calibration and validation: $\Upsilon(3 S)$

- $p_{T}<20 \mathrm{GeV}, \cos \theta^{*}<0$ (least sentitive bin):

BARREL

ENDCAP

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$

The X_{b} search: results as a function of mass

ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]

- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$

(a) Barrel, low p_{T}, low $\cos \theta^{*}$

(e) Endcap, low p_{T}, low $\cos \theta^{\circ}$

(b) Barrel, low p_{T}, high $\cos \theta^{*}$

(f) Endcap, low p_{T}, high $\cos \theta^{*}$

(c) Barrel, high p_{T}, low $\cos \theta^{\circ}$
 (g) Endcap, high p_{T}, low $\cos \theta^{*}$

(d) Barrel, high p_{T}, high $\cos \theta^{*}$

(h) Endcap, high p_{T}, high $\cos \theta^{*}$

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae
- cf. $R=3 \%, 6.56 \%$

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae
- cf. $R=3 \%, 6.56 \%$
- set ULs using CLs

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae
- cf. $R=3 \%, 6.56 \%$
- set ULs using CLs
- syst's first added:
- using \mathcal{G} constraints
- increases limits $\lesssim 13 \%$
- inflates $\pm 1 \sigma$ bands 9.5-25\%

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae
- cf. $R=3 \%, 6.56 \%$
- set ULs using CLs
- syst's first added:
- using \mathcal{G} constraints
- increases limits $\lesssim 13 \%$
- inflates $\pm 1 \sigma$ bands $9.5-25 \%$
- recalculated for the other spin-align ${ }^{t}$ working pts

The X_{b} search: results as a function of mass

 ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]- hypothesis test every 10 MeV from $10-11 \mathrm{GeV}$, excluding $\Upsilon(2 S, 3 S)$
- fit range $m \pm 8 \sigma_{\text {endcap }}: \pm 72 \mathrm{MeV}$ at $10 \mathrm{GeV} ; \pm 224 \mathrm{MeV}$ at 10.9 GeV
- simultaneous fit to the $8\left(|y|, p_{T}, \cos \theta^{*}\right)$ bins, for $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}$
- local signif. $z<3$ by asymptotic formulae
- cf. $R=3 \%, 6.56 \%$
- set ULs using CLs
- syst's first added:
- using \mathcal{G} constraints
- increases limits $\lesssim 13 \%$
- inflates $\pm 1 \sigma$ bands $9.5-25 \%$
- recalculated for the other spin-align ${ }^{t}$ working pts

- reported in detail

Bonus searches: $\Upsilon\left(1^{3} D_{J}\right), \Upsilon(10860)$, and $\Upsilon(11020)$

ATLAS Collab., Physics Letters B 740, 199-217 (2014); arXiv:1410.4409 [hep-ex]

$\Upsilon\left(1^{3} D_{J}\right)$ triplet:

- Tried triplet fit $\rightarrow \mathrm{z}=0.12$
- J=2:

$$
\sigma\left[\Upsilon\left(1^{3} \mathrm{D}_{2}\right)\right]<0.55 \sigma[\Upsilon(2 \mathrm{~S})]
$$

using known $\pi^{+} \pi^{-} \curlyvee(1 \mathrm{~S})$ branching (observed at CLEO + BaBar)
$\Upsilon(10860)$ and $\Upsilon(11020)$:

- Broad - different fitting model
- $\Gamma_{\pi \pi \curlyvee}$ large for $\Upsilon(10860)$
- No evidence for either state

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi[\mathrm{CMS}$, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi[\mathrm{CMS}$, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$
[expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi[\mathrm{CMS}$, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$
[expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub- MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$
[expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub-MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub-MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]
- further, large $D \bar{D}^{*}$ isospin breaking $\left(m_{ \pm}-m_{00}=+8.08 \pm 0.11 \mathrm{MeV}\right)$ is absent for $B \bar{B}^{*}\left(m_{ \pm}-m_{00}=-0.64 \pm 0.12 \mathrm{MeV}\right)^{\ddagger}$

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi[C M S, J H E P 1304,154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub-MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]
- further, large $D \bar{D}^{*}$ isospin breaking $\left(m_{ \pm}-m_{00}=+8.08 \pm 0.11 \mathrm{MeV}\right)$ is absent for $B \bar{B}^{*}\left(m_{ \pm}-m_{00}=-0.64 \pm 0.12 \mathrm{MeV}\right)^{\ddagger}$
- recently stressed by theorists [Guo/Meißner/Wang, 1204.2158; Karliner ...]

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub- MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]
- further, large $D \bar{D}^{*}$ isospin breaking ($m_{ \pm}-m_{00}=+8.08 \pm 0.11 \mathrm{MeV}$) is absent for $B \bar{B}^{*}\left(m_{ \pm}-m_{00}=-0.64 \pm 0.12 \mathrm{MeV}\right)^{\ddagger}$
- recently stressed by theorists [Guo/Meißner/Wang, 1204.2158; Karliner ...] X(3872): $\left|m_{ \pm}-m_{00}\right| \gg E_{b} ; \approx$ pure $D^{0} \bar{D}^{* 0}$ state; $\mathcal{B}_{\rho \psi} \simeq \mathcal{B}_{\omega \psi}$

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub-MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]
- further, large $D \bar{D}^{*}$ isospin breaking $\left(m_{ \pm}-m_{00}=+8.08 \pm 0.11 \mathrm{MeV}\right)$ is absent for $B \bar{B}^{*}\left(m_{ \pm}-m_{00}=-0.64 \pm 0.12 \mathrm{MeV}\right)^{\ddagger}$
- recently stressed by theorists [Guo/Meißner/Wang, 1204.2158; Karliner ...] X(3872): $\left|m_{ \pm}-m_{00}\right| \gg E_{b} ; \approx$ pure $D^{0} \bar{D}^{* 0}$ state; $\mathcal{B}_{\rho \psi} \simeq \mathcal{B}_{\omega \psi}$
$\mathbf{X}_{\mathrm{b}}:\left|m_{ \pm}-m_{00}\right| \ll E_{b} ; \approx$ pure $I=0$ state; $\mathcal{B}_{\rho \Upsilon}$ "strongly" suppressed

Interpretation, and future plans

- this is the most senstitive X_{b} production search for $m>10.1 \mathrm{GeV}$ [expected ULs tighter than CMS, PLB 727, 57-76 (2013), modulo spin-alignment]
- excludes $R=\sigma \mathcal{B} /(\sigma \mathcal{B})_{\Upsilon(2 S)}=6.56 \%$ throughout search range cf. $\pi \pi \psi$ [CMS, JHEP 1304, $154(2013)]:(\sigma \mathcal{B})_{X(3872)} /(\sigma \mathcal{B})_{\psi(2 S)}=6.56 \%$
- if X_{b} exists, relative production $\sigma / \sigma_{2 S}$ or branching $\mathcal{B} / \mathcal{B}_{2 S}$, or both, are weaker than for $X(3872)$
- note that an X_{b} is not in general a carbon copy of the $X(3872)$:
- $X(3872)$ is within sub- MeV resolution of $D^{0} \bar{D}^{* 0}$ threshold
- even a molecular X_{b} is bound by as much as 44 MeV [for 3872-analogue $B^{0} \bar{B}^{* 0}$ molecule of Swanson, PLB 588, 189-185 (2004)]
- further, large $D \bar{D}^{*}$ isospin breaking ($m_{ \pm}-m_{00}=+8.08 \pm 0.11 \mathrm{MeV}$) is absent for $B \bar{B}^{*}\left(m_{ \pm}-m_{00}=-0.64 \pm 0.12 \mathrm{MeV}\right)^{\ddagger}$
- recently stressed by theorists [Guo/Meißner/Wang, 1204.2158; Karliner ...] $\mathrm{X}(3872):\left|m_{ \pm}-m_{00}\right| \gg E_{b} ; \approx$ pure $D^{0} \bar{D}^{* 0}$ state; $\mathcal{B}_{\rho \psi} \simeq \mathcal{B}_{\omega \psi}$

$$
\mathbf{X}_{\mathbf{b}}:\left|m_{ \pm}-m_{00}\right| \ll E_{b} ; \approx \text { pure } I=0 \text { state; } \quad \mathcal{B}_{\rho \Upsilon} \text { "strongly" suppressed }
$$

- I-allowed modes - $\left\{\gamma, \pi \pi \pi^{0}\right\} \Upsilon, \pi \pi \chi_{b}$ - have severe $\mathcal{A} \cdot \epsilon$ problems

Summary

- ATLAS has searched for an X_{b} in inclusive $\pi \pi \Upsilon$ at $8 \mathrm{TeV} p p$ collisions
- the analysis is subject to spin-alignment-dependent acceptance effects due to p_{T} thresholds, $c f$. soft onia production spectrum
- $\pi^{+} \pi^{-} \mu^{+} \mu^{-}$combinations vtx-fitted with $m\left(\mu^{+} \mu^{-}\right)=m_{\Upsilon}$ constraint
- discrimination in $\left(|y|, p_{T}, \cos \theta^{*}\right)$ is exploited by $2 \times 2 \times 2$ binning
- simultaneous binned UML fit to resulting $m\left(\pi^{+} \pi^{-} \Upsilon\right)$ distributions
- local $P_{2}+{ }^{2} \mathcal{G}$ fit every 10 MeV , with parameters
- fixed to combination of $7 \mathrm{TeV} p p$ data and MC
- calibrated and validated on the $\Upsilon(2 S, 3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon$ peaks and systematics included using Gaussian constraints
- no signal seen, and $\sigma \mathcal{B} /(\sigma \mathcal{B})_{2 S}=6.56 \%$ excluded everywhere
- I-allowed decay modes - with difficult $\mathcal{A} \cdot \epsilon$ conditions — under study

BACKUP: systematics

The upper limit calculation depends indirectly on signal and background fitting parameters, including the fraction of the signal falling in each of the analysis bins. From Eq. (2), the upper limit on R is proportional to the inverse fitted $\Upsilon(2 \mathrm{~S})$ yield, $N_{2 S}^{-1}$, and the ratios $\mathcal{F}_{2 S} / \mathcal{A}$ and $\epsilon_{2 S} / \epsilon$. For each source of systematic uncertainty, the impact on these factors is quantified to find the maximum shift across the mass range. These are then summed in quadrature and included in the fit as Gaussian-constrained nuisance parameters.

The $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$ dipion mass distribution favours high mass [6, 9]; for a potential hidden-beauty counterpart this distribution is unknown. For $\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi$ [42], and both $\Upsilon(2 S)$ [39] and $\Upsilon(4 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ [43, 44], the dipion mass distributions are concentrated near the upper boundary; those for $Y(4260) \rightarrow \pi^{+} \pi^{-} J / \psi$ [45] and $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ [40] are double-humped. The results quoted here assume decay according to three-body phase space; $\Upsilon(2 S)$ - and $\Upsilon(3 S)$-like distributions change the splitting functions by up to 35%, decrease the efficiency ratio by up to 17%, and produce modest changes in other parameters.

The next largest contribution is due to the linear extrapolation of the acceptance between the $\Upsilon(2 S)$ and $\Upsilon(3 S)$ values. Alternative extrapolations between the $\Upsilon(1 S)$ and $\Upsilon(2 S)$, and between $\Upsilon(1 S)$ and $\Upsilon(3 S)$, are also tried; the greatest change in the acceptance ratio, 12%, is assigned as the uncertainty.

The parameters of the efficiency, the splitting functions, and the widths of the narrow signal components σ_{b} and σ_{ec} as functions of mass, are varied by the uncertainties on their fitted values; alternative functional forms are also tried. In each case, the largest deviation is assigned as the systematic uncertainty. The use of production weights (described in Section 4) relies on assumptions regarding rapidity dependence, and evolution from $\sqrt{s}=7 \mathrm{TeV}$ to 8 TeV . Removing these weights produces $\mathrm{a} \sim 1 \%$ change in efficiency ratio (most of the differences cancel), but changes the values of the splitting functions by up to 8%.

Data versus simulation differences in the $\Upsilon(2 S)$ width parameters in the barrel and endcap (1.9% and 4.2%, respectively) are incorporated as a source of uncertainty, as is the statistical uncertainty on the averages used for signal shape parameters f and $r(0.5-1.4 \%)$. The background shape model is also altered, allowing a third-order term comparable in size to typical values of the second-order terms. Finally, uncertainties on $N_{2 S}$ and the barrel/endcap scaling factor are assigned based on uncertainties from the $\Upsilon(2 S)$ fits.

BACKUP: systematics

Table 1. The contribution of the various sources of systematic uncertainty to the fitting-type parameters influencing the upper limit calculation. The subscripts on σ, f, and r specify whether they are shape parameters for the barrel ("b", $|y|<1.2$) or endcap ("ec", $1.2<|y|<2.4$) regions. The parameters labelled with an S refer to the splitting functions. Their values are the fraction of the signal in the lower bin of the subscript variable within the kinematic range specified by the superscript: "b" and "ec" as above, "(1)" for $\left(|y|<1.2, p_{\mathrm{T}}<20 \mathrm{GeV}\right)$, "(2)" for $\left(|y|<1.2, p_{\mathrm{T}}>20 \mathrm{GeV}\right)$, "(3)" for $\left(1.2<|y|<2.4, p_{\mathrm{T}}<20 \mathrm{GeV}\right)$, and "(4)" for $\left(1.2<|y|<2.4, p_{\mathrm{T}}>20 \mathrm{GeV}\right)$. All values are relative uncertainties, expressed as a percentage.

	$\sigma_{\mathrm{b}}[\%]$	$\sigma_{\mathrm{cc}}[\%]$	f_{b} [\%]	$f_{\text {cc }}$ [\%]	$r_{\text {b }}$ [\%]	$r_{\text {cc }}[\%]$	$S_{\text {bl }}[\%]$	$S_{p T}^{\mathrm{b}}$ [\%]	$S_{p \mathrm{c}}^{\mathrm{cc}}[\%]$	$S_{\cos \theta^{*}}^{(1)}[\%]$	$S_{\cos \theta^{\circ}}^{(2)}[\%]$	$S_{\cos \theta^{*}}^{(3)}$ [\%]	$S_{\cos \theta^{\text {e }}}^{(4)}[\%]$
Extracting f, r			0.5	1.1	1.2	1.4							
Extrapolating σ	0.1	0.2											
Data/MC difference in σ	1.9	4.2											
$\|y\|$ scale factors							5.8						
Production weighting							0.3	8.4	7.0	0.9	2.8	2.1	3.4
Bin splittings: fit							0.2	0.5	0.8	2.4	4.2	2.8	6.0
Bin splittings: parameterisation							1.8	1.0	1.2	0.2	0.2	0.4	0.2
$m_{\pi^{+} \pi^{-}}$shape							0.2	8.0	11.5	34.7	16.2	15.9	15.0
Total	2.0	4.2	0.5	1.1	1.2	1.4	6.1	11.6	13.6	34.8	17.0	16.3	16.6

Table 2. The contribution of the various sources of systematic uncertainty to the scaling-type parameters influencing the upper limit calculation. All values are relative uncertainties, expressed as a percentage.

	$N_{2 \mathrm{~S}}[\%]$	$\epsilon / \epsilon_{2 \mathrm{~S}}[\%]$	$\mathcal{A} / \mathcal{F}_{2 \mathrm{~S}}[\%]$	$\epsilon / \epsilon_{2 \mathrm{~S}} \cdot \mathcal{F} / \mathcal{A}_{2 \mathrm{~S}}[\%]$
$N_{2 \mathrm{~S}}$ yield	2.3			
ϵ vs. m : fit		1.0		
ϵ vs. m : parameterisation		0.5		
Production weighting		1.0		
Acceptance Extrapolation			11.7	
$m_{\pi^{+} \pi^{-} \text {- } \text { shape }}$				17.3
Total	2.3	1.5	11.7	17.3

BACKUP: observation of the $\chi_{\mathrm{b}}(\mathrm{nP})$ states

ATLAS: PRL 108, 152001 (2012); arXiv:1112.5154 [hep-ex]
from 2011 data: "combined" muon tracks, $\quad p_{T}>4 \mathrm{GeV}, \quad|\eta|<2.3$; well-vertexed $\mu^{+} \mu^{-}: \quad p_{T}>12 \mathrm{GeV}, \quad|y|<2.0$

unconverted photon selection

poor acceptance due to
$p_{T}^{\gamma}>2.5 \mathrm{GeV}$ threshold

BACKUP: observation of the $\chi_{\mathrm{b}}(\mathrm{nP})$ states

ATLAS: PRL 108, 152001 (2012); arXiv:1112.5154 [hep-ex]
from 2011 data: "combined" muon tracks, $\quad p_{T}>4 \mathrm{GeV}, \quad|\eta|<2.3$; well-vertexed $\mu^{+} \mu^{-}$: $p_{T}>12 \mathrm{GeV}, \quad|y|<2.0$

$$
\Upsilon(1 S) \text { and }(2 S) \rightarrow \mu^{+} \mu^{-} \text {sel }^{n}
$$

converted photon vertices (xy)

$$
\text { now } p_{T}^{\gamma}>1.0 \mathrm{GeV}
$$

but low conversion efficiency

BACKUP: observation of the $\chi_{\mathrm{b}}(\mathrm{nP})$ states

ATLAS: PRL 108, 152001 (2012); arXiv:1112.5154 [hep-ex]
from 2011 data: "combined" muon tracks, $\quad p_{T}>4 \mathrm{GeV}, \quad|\eta|<2.3$; well-vertexed $\mu^{+} \mu^{-}: \quad p_{T}>12 \mathrm{GeV}, \quad|y|<2.0$

$$
\chi_{b} \rightarrow \gamma_{\text {uncon }} \Upsilon(1 S) \text { fit }
$$

$$
\chi_{b} \rightarrow \gamma_{\text {convert }} \Upsilon(n S) \text { fit }
$$

BACKUP: observation of the $\chi_{\mathrm{b}}(\mathrm{nP})$ states

ATLAS: PRL 108, 152001 (2012); arXiv:1112.5154 [hep-ex]
from 2011 data: "combined" muon tracks, $\quad p_{T}>4 \mathrm{GeV}, \quad|\eta|<2.3$; well-vertexed $\mu^{+} \mu^{-}: \quad p_{T}>12 \mathrm{GeV}, \quad|y|<2.0$

D \varnothing confirmation (also conversions)
$\chi_{b} \rightarrow \gamma_{\text {convert }} \gamma(n S)$ fit

BACKUP: first observation of the $\chi_{b J}(3 P)$

$\chi_{b}(3 P)$ significance $>6 \sigma$ in each sample; for the photon conversions:

- $\chi_{b 0} \rightarrow \gamma \Upsilon$ suppressed: omitted
- $\chi_{b 1, b 2}(1 P, 2 P)$ fixed to WA
- $\chi_{b 1, b 2}(3 P)$ splitting $=12 \mathrm{MeV}$ assumed
$\chi_{b}(3 P)$ barycenter \tilde{m}_{3} determination: calo. $10.541 \pm 0.011 \pm 0.030 \mathrm{GeV}$
conv $^{n s} \quad 10.530 \pm 0.005 \pm 0.009 \mathrm{GeV}$ predicted 10.525
(PRD 36, 3401 (1987); 38, 279 (1988); EPJC 4, 107 (1998))
there will be indirect $\Upsilon(3 S)$ production !

Observed bottomonium radiative decays in ATLAS, $L=4.4 \mathrm{fb}^{1}$

