

Comparison between DPM and FTF

&

Anastasia Karavdina ¹⁾

Donghee Kang²⁾

Institut für Kernphysik Universität Mainz¹⁾

Helmholtz Institute Mainz Universität Mainz²⁾

Helmholtz Institute Mainz

PANDA collaboration meeting, Forschungszentrum Jülich, 10 Dec. 2014

DPM

- is a generic annihilation background generator
- based on the Dual Parton Model (DPM), which is a synthesis of the Regge theory, topological expansions of QCD and parton model

FTF

- Extension of DPM approach
- New tuning parameters based on the FRITIOF Model (FTF)
- is used as a hadronic interaction model in GEANT4
- Recently implemented by Aida Galoyan within PANDAroot framework

MC parameterization

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

$$\begin{aligned} \sigma_{a} &= \frac{51.6}{\sqrt{s}} - \frac{58.8}{s} + \frac{16.4}{s^{1.5}} \\ \sigma_{b} &= \frac{77.4}{\sqrt{s}} - \frac{88.2}{s} + \frac{24.6}{s^{1.5}} \\ \sigma_{c} &= \frac{93}{s} - \frac{106}{s^{1.5}} + \frac{30}{s^{2}} \\ \sigma_{g} &= \frac{18.6}{s^{0.08}} - \frac{33.5}{\sqrt{s}} + \frac{30.8}{s} \\ \sigma_{d} &= \sigma_{e} = \sigma_{f} = \sigma_{h} = 0 \end{aligned}$$

$$\sigma_{a} = \frac{25}{\sqrt{s - 4m^{2}}}, \sigma_{e} = \frac{140}{s}$$

$$\sigma_{b} = \begin{cases} 15.65 + 700 \cdot (2.173 - \sqrt{s})^{2} & \text{if } \sqrt{s} \le 2.172 \\ 34/\sqrt{s} & \text{if } \sqrt{s} \ge 2.172 \end{cases}$$

$$\sigma_{c} = \frac{2}{\sqrt{s - 4m^{2}}} \cdot \left(\frac{(m_{p} + m_{t})}{s}\right)^{2}$$

For sub-process, the assumed σ_{sub} that are used to generate events are different

 \circ multi – particle production : σ_a

 \circ 3 meson final state : σ_e

 $p\overline{p} \rightarrow \pi^+\pi^-\pi^0$

$$p\bar{p} \rightarrow 2\pi^+ 2\pi^- \pi^0, 2\pi^+ 2\pi^-, 3\pi^+ 3\pi^-, 3\pi^+ 3\pi^- \pi^0$$

 \circ pion radiation with baryon – antibaryon : σ_{b}

$$p\overline{p} \rightarrow \Lambda \overline{\Lambda} \pi^{0}, \Lambda \overline{\Lambda} \pi^{+} \pi^{-}$$

 \circ binary reactions: σ_{b}, σ_{e}

$$p\overline{p} \to \pi^+\pi^-, K^+K^-, n\overline{n}, \Lambda\overline{\Lambda}$$

$$\circ$$
 2 particle production at low energy: σ_c

 $p\overline{p} \rightarrow \pi^+\pi^-, \pi^0\pi^0, K^+K^-$

 \circ diffraction dissociation : $\boldsymbol{\sigma}_{g},\boldsymbol{\sigma}_{h}$

$$p\overline{p} \rightarrow p\pi^0\overline{p}, p\pi^+\pi^-\overline{p}, p\pi^-\overline{n}$$

How much does MC true level differ from FTF to DPM?

- Inelastic events only for both DPM and FTF (each 1M events)
- 2 different \sqrt{s} = 2.4 & 5.5 GeV/c² (p_{beam} = 1.9 GeV/c & 15.1GeV/c)
- Resonances have zero width in FTF and "realistic" width in DPM
- Options of FTF depending on inelastic hadronic interaction, cascade, fission, and nuclear de-excitation models in valid energy range ^{1),2)}
 - Ftfb : FTF + binary (all cascade processes for low energy interaction)
 - Ftfp : FTF + precompound (simplified by absorption process only)

¹⁾ E. Atomssa, GEANT3-GEANT4 hadronic response comparisons, PANDA Collaboration Meeting, Dec.2013

²⁾ A. Galoyan. Physics of antiproton-proton and antiproton-nucleus annihilation processes implemented in Geant4, *PANDA Collaboration Meeting*, Sep.2013

Comparison p_{beam} = 1.9 GeV

F

HELMHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAF

Comparison p_{beam} = 15.1 GeV

JOHANNES GUTENBERG UNIVERSITÄT MAINT HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Comparison p_{beam} = 15.1 GeV

ANNES GUTENBERG

UNIVERSITÄT MAI

Comparison p_{beam} = 15.1 GeV

IOHANNES GUTENBERG

UNIVERSITÄT MAIN

HELMHOLTZ

GUTENBERG IVVERSITAT MAINS

How much does reconstruction differ from FTF to DPM?

ELMHOLTZ

- Simulation : PANDAroot release rev.26329 (2014.10.29) Oct14
- Inelastic events only (each 1M events) @ $\sqrt{s} = 5.5 (\text{GeV/c})^2$

Invariant mass distribution

Test of invariant mass distribution with DPM and FTF background

- Fixed event ratio with signal σ = 10 mb and background σ = 50 mb
- Data set with no PID and using track combination

GUTENBERG

IELMHOLTZ

Invariant mass distribution

Test of invariant mass distribution with DPM and FTF background

- Fixed event ratio with signal σ = 10 mb and background σ = 50 mb
- Data set with no PID and using track combination

HELMHOLTZ

Invariant mass distribution

Other physics channel @
$$\sqrt{s} = 5.5 (\text{GeV/c})^2$$

 no significant difference between DPM and FTF

NES GUTENBERG

- small variation (~1-2%) in mass range and each physics channel

- Test of ranking procedure and optimization to find the best kinematic variable, which is an important process used in online software trigger
- If FTF and DPM background data based approach
 - show similar kinematic distribution, best variable should be same (small systematic uncertainty)
 - has some difference, best ranked variable should be different (large systematic uncertainty)

Influence on the optimization

• Ranking procedure of $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow K^- \pi^+ + \text{Any}$ @ online software trigger

IOHANNES GUTENBERG

UNIVERSITÄT

 $\sqrt{s} = 5.5 \, (\text{GeV/c})^2$

HELMHOLTZ

elmholtz-Institut Main

GEMEINSCHAF

HELMHOLTZ | GEMEINSCHAFT Helmholtz-Institut Mainz

• DPM and FTF event filtered $\ \overline{p}p \rightarrow \pi^+\pi^-$

- 0.1M events for each generator
- Data set with no PID

Compare of sub-process

• DPM and FTF event filtered $pp \rightarrow \pi^+ \pi^- \pi^0$

NES GUTENBERG

- 0.1M events for each generator
- Data set with no PID

HELMHOLTZ

HELMHOLTZ

 θ and P_z in region θ <150 mrad

Our background studies show that LMD background particles have $P_z \sim\! P_{beam}$ and $\theta{<}150$ mrad

0.1 M inelastic events

HANNES GUTENBERG

UNIVERSITÄT

 $\sqrt{s} = 5.5 \, (\text{GeV/c})^2$

HELMHOLTZ

Helmholtz-Institut Mainz

After	DPM	FTF	(FTF-DPM)/DPM, %
Hit rec	10335	12276	18.8
Trk search	1017	1651	62.3
X&Y cut	39	228	485
M cut	37	224	505

- cellular automate has been used for track search

– M cut is a momentum cut @ high energy mode

- For LMD study FTF predicts 5 times more background
- $(B/S)_{DPM} \sim 0.2\% \rightarrow (B/S)_{FTF}$ increase to ~ 1 %

- Compared FTF with DPM in the MC truth and reconstruction level
- Need to consider two different size of systematic uncertainty for MC background description
 - no significant difference at global analysis (e.g. online software trigger)
 - show some difference in the analysis of sub-processes
- Development of user Interface for FTF as like PndDpmDirect
- Not only $\overline{p}p$ reaction, but also $\overline{p}A$ reaction is available with FTF

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Backup

Contributions of FTF model processes to $\overline{p}p$ inelastic cross sections

A. Galoyan. Physics of antiproton-proton and antiproton-nucleus annihilation processes implemented in Geant4, *PANDA Collaboration Meeting*, Sep.2013

Comparison p_{beam} = 1.9 GeV

JOHANNES GUTENBERG UNIVERSITÄT MAIN HELMHOLTZ

Comparison p_{beam} = 1.9 GeV

JOHANNES GUTENBERG

UNIVERSITÄT MAIN

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Pbar-P channel cross sections with baryons in final states

http://g4validation.fnal.gov:8080/G4ValidationWebApp/G4ValHAD.jsp

Exp. Data: E.Bracci et al., CERN/HERA 73-1(1973)

Pbar-P annihilation channel cross sections

http://g4validation.fnal.gov:8080/G4ValidationWebApp/G4ValHAD.jsp

Exp. Data: E.Bracci et al., CERN/HERA 73-1(1973)

Results for inclusive cross sections of Antiproton–Proton reactions P_T^2 of π + mesons P_T^2 of Protons

Exp. Data: J. Chyla, Czech. J. Phys. B 30 1980E.G. Boos et al., Nucl. Phys. B174 45, 1980E.V. Vlasov, Z. Phys. C - Particles and Fields 13, 95, 1982