FtfDirect & TreeFitter

Ralf Kliemt

Helmholtz-Institut Maiz, GSI Darmstadt

29. Oct. 2014

1 PndFtfDirect

2 TreeFitter - Concept

3 TreeFitter - Status

PndFtfDirect

- Use directly in your simulation root macro
- Currently needs the external ".mac" file
- Usage similar to PndDpmDirect foreseen
- Coulomb elastic option planned (code from Anastasia)

Usage right now:

```
TString macfile = gSystem->Getenv("VMCWORKDIR");
macfile += "/pgenerators/FtfEvtGen/PbarP.mac";
PndFtfDirect *Ftf = new PndFtfDirect(macfile.Data());
primGen->AddGenerator(Ftf);
```

Decay Fits in Rho

Vertex Fit Corrects final state momenta to one common point along trajectories (use PndVtxPRG)

Kinematic Fit Corrects daughter momenta to meet the mass or 4-momentum constraint

Executing fits subsequently and with locking some candidates, a leaf-by-leaf structure is created.

Example

- 1 Vertex fits for K_S and rest of tracks.
- **2** Mass constraint fit with vertex fitted K_S daughters
- **3** Locking K_S daughters
- 4 4C fit on rest & K_S

TreeFitter

Basically fits the whole decay tree. Vertices, known masses, measured tracks & neutrals and beam/target measurement ("4C") are included as constraints. The common approach is the χ^2 fit with Lagrange multipliers.

 \rightarrow Very large parameter space and large matrices have to be inverted!

Solution: Kalman Filter approach

- Calculation of χ^2 is linearized
- Each constraint to the fit enters as one separate, scalar term
 → maximum matrix dimension to be inverted is usually 5 (helices).
- Do not confuse with our track fitting!

Existing TreeFitter

- BaBar & LHCb have a TreeFitter, written by W.Hulsbergen
- The author provided us the latest stable code.
- Our goal: Implementation into PandaRoot

Status

- \checkmark Obtain the code & look for showstoppers
- $\checkmark \quad \mathsf{Matrices} \And \mathsf{Vectors:} \ \mathsf{CLHEP} \to \mathsf{ROOT}$
- Framework interfaces: Gaudi \rightarrow FairBase/ROOT & LHCB \rightarrow PandaRoot
- Candidate Interfaces via Rho (calculations to be transformed)
- × Running Tests & Debugging

Status

- \checkmark Obtain the code & look for showstoppers
- $\checkmark \quad \mathsf{Matrices} \ \& \ \mathsf{Vectors:} \ \mathsf{CLHEP} \to \mathsf{ROOT}$
- Framework interfaces: Gaudi \rightarrow FairBase/ROOT & LHCB \rightarrow PandaRoot
- Candidate Interfaces via Rho (calculations to be transformed)
- × Running Tests & Debugging

Thanks.