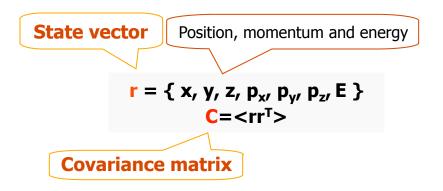
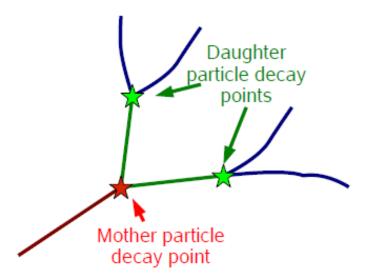
KF Particle for the PANDA Experiment


Ivan Kisel^{1,2,3} and Maksym Zyzak^{1,2,3}

Goethe-Universität Frankfurt, Frankfurt am Main, Germany
 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

LI PANDA Collaboration Meeting Jülich, Germnay 10.12.2014

Concept of KF Particle

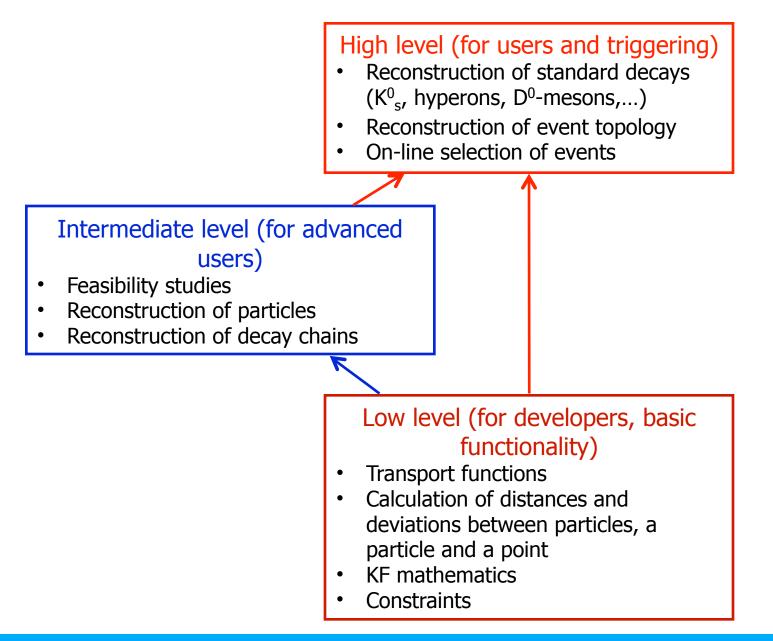


Functionality of the package:

- Construction of the particles from tracks or another particles
- Decay chains reconstruction
- Transport of the particles
- Simple access to the particle parameters and their errors
- Calculation of the distance to point

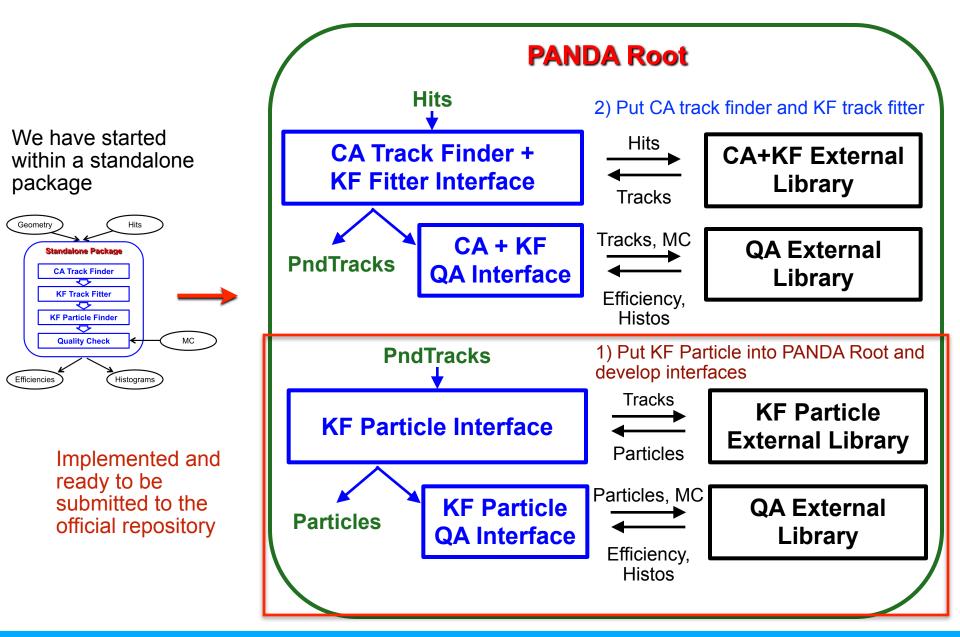
Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- Geometry independent
- Kalman filter based


Add, construct, propagate complete particles: parameters and their covariance matrices

Functionality of KF Particle

Functions	CBM	PANDA	ALICE	STAR
Construction of mother particles	+	+	+	+
Addition and subtraction of the daughter particle to (from) the mother particle	+	+	+	+
+= and -= operators	+	+	+	+
Accessors to the physical parameters (mass, momentum, decay length, lifetime, rapidity, etc)	+	+	+	+
Transport: to an arbitrary point, to the decay and production points, to another particle, to a vertex, on the certain distance	+	+	+	+
Calculation of a distance: to a point, to a particle, to a vertex	+	+	+	+
Calculation of a deviation: from a point, from a particle, from a vertex	+	+	+	+
Calculation of the angle between particles	+	+	+	+
Constraints: on mass, on a production point, on a decay length	+	+	+	+
KF Particle Finder	+	+	+	+


Exactly the same package in all four experiments: CBM, PANDA, ALICE and STAR

Structure of the Package

10 December 2014

Proposed Structure within PANDA Root

Main tasks (folder kf)

- **PndKFParticleFinder** runs reconstruction of PV and short-lived particles
- PndKFParticleFinderPID determines the PID for tracks
- **PndKFParticleFinderQA** collect histograms, calculates efficiency

KFParticle

Input data:

- KFPTrack track, input for KFParticle
- **KFPVertex** vertex, input for **KFParticle**
- **KFPTrackVector** array of tracks, input for **KFParticleSIMD**
- **KFPEmcCluster** array of Emc clusters, input for **KFParticleSIMD**

Classes with mathematics and tasks for analysis:

- KFParticle scalar version
- **KFVertex** class for PV construction
- KFParticleSIMD vectorised version
- KFParticlePVReconstructor finds PVs
- **KFParticleFinder** finds short-lived particles
- KFParticleTopoReconstructor prepare tracks for further analysis, runs reconstruction of PV and short-lived particles

KFParticlePerformance

- **KFMCTrack** stores parameters of MC tracks
- **KFMCVertex** stores parameters of MC vertices
- **KFMCParticle** stores dependencies between MC tracks KFPartMatch
- **KFPartMatch** stores matching between reconstructed and MC particles
- **KFPartEfficiencies** list of the decays to analyse
- **KFTopoPerformance** calculates efficiencies and collects histograms for the particles listed in **KFPartEfficiencies**

```
Reconstruction of the decay chain on example:

\Xi^- \rightarrow \Lambda \pi^-

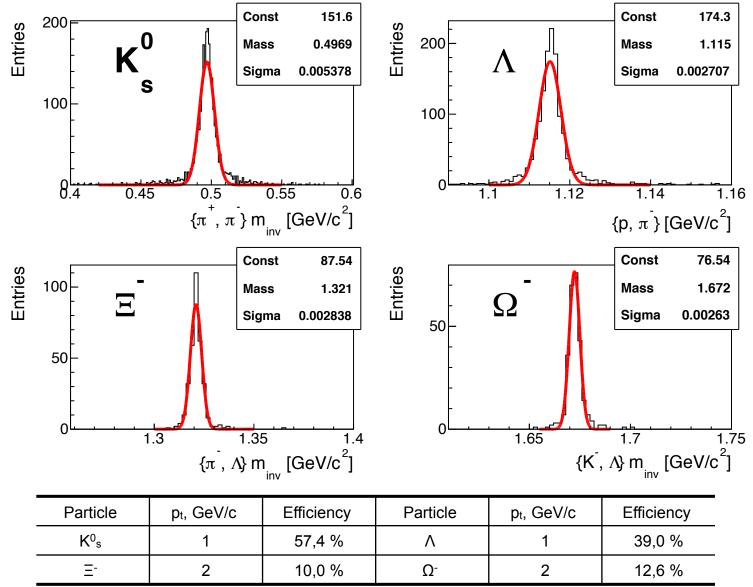
\Lambda \rightarrow p \pi^-
```

```
//Convert tracks into KF Particle objects
```

KFParticle pion1(kfptracks[0], -211); //pi-KFParticle proton(kfptracks[1], 2212); //proton KFParticle pion2(kfptracks[2], -211); //pi-

//Construct Lambda-candidate

KFParticle Lambda; const KFParticle* LambdaDaughters[2] = { &proton, &pion1 }; Lambda.Construct(LambdaDaughters, 2);

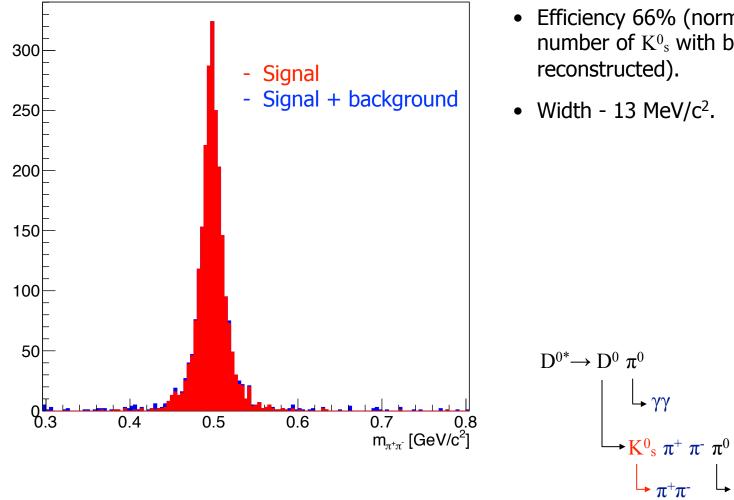

//Set a mass constraint on Lambda
Lambda.SetNonlinearMassConstraint(1.115683);

```
//Reconstruct Xi-
KFParticle Xi;
const KFParticle* XiDaughters[2] = { &Lambda, &pion2 };
Xi.Construct(XiDaughters, 2);
```

Test with Strange Particles. Simulation Parameters

- KF Particle is included to PANDA Root as an external package, which will be common for CBM, PANDA, STAR and ALICE.
- Interfaces are prepared to run KF Particle Finder and QA for reconstructed particles.
- The first test are performed with pure signal: 10000 of K^{0}_{s} , Λ , Ξ^{-} and Ω^{-} .
- Setup of STT+MVD was used.
- The ideal track finder with Genfit from the Panda Root were used to reconstruct tracks.

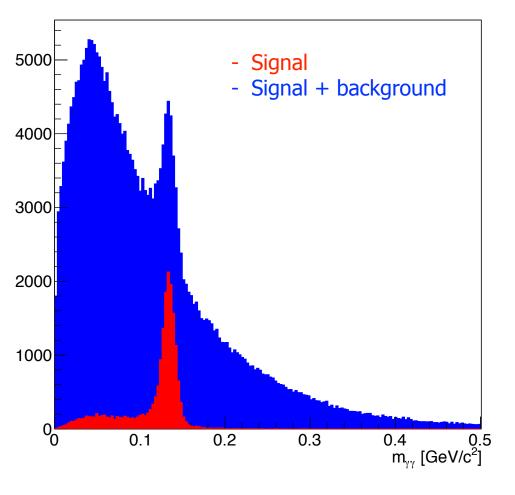
PANDA Root: Strange Particles with KF Particle


10000 signal events, Ideal track finder, MC primary vertex

Test with a Complicated Decay Topology

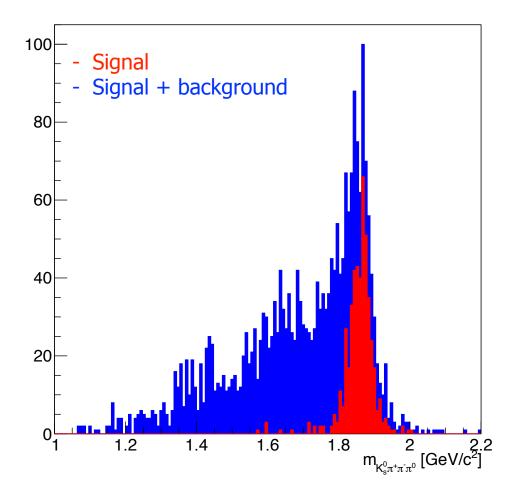
• Pure signal (10000 particles) was simulated with a momentum of 4 GeV:

 $D^{0*} \rightarrow D^{0} \pi^{0}$ $\downarrow \gamma \gamma$ $\downarrow K^{0}{}_{s} \pi^{+} \pi^{-} \pi^{0}$ $\downarrow \pi^{+}\pi^{-} \downarrow \gamma \gamma$


- The ideal track finder with Genfit from the Panda Root were used to reconstruct tracks.
- MC Primary vertex was used.

- Efficiency 66% (normalised on the number of K⁰_s with both daughters reconstructed).
- Width 13 MeV/c².

Reconstruction of π^0

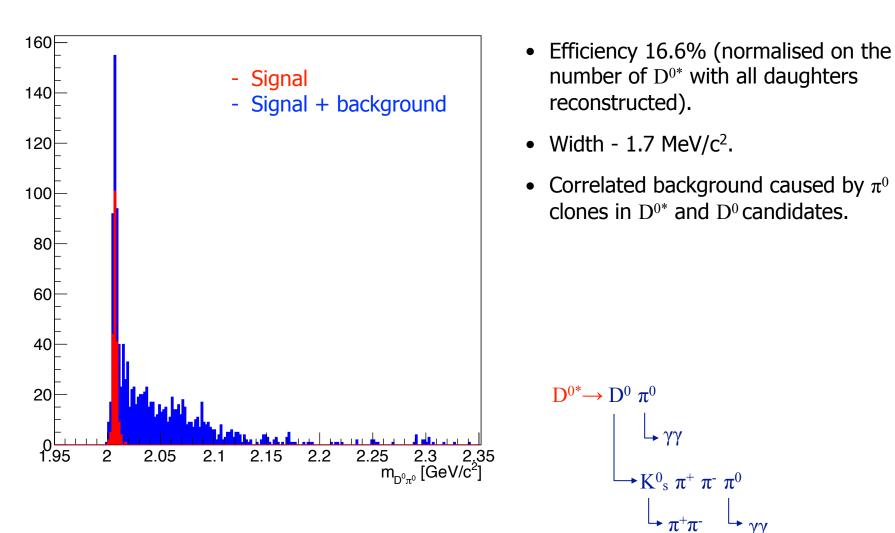

- Efficiency 98.4% (normalised on the number of π⁰ with both daughters reconstructed).
- Width 8.8 MeV/c².
- Cuts on EMC clusters:
 - EMC quality 100 cm²;
 - energy of a cluster 20 MeV/c².
- Tail in signal: clones (double reconstructed clusters).

$$D^{0*} \rightarrow D^{0} \pi^{0}$$

$$\downarrow \gamma \gamma$$

$$\downarrow K^{0}{}_{s} \pi^{+} \pi^{-} \pi^{0}$$

$$\downarrow \pi^{+}\pi^{-} \downarrow \gamma \gamma$$


- Efficiency 23.5% (normalised on the number of D⁰ with all daughters reconstructed).
- Width 25 MeV/c².
- High background is caused by the π^0 background.

$$D^{0*} \rightarrow D^{0} \pi^{0}$$

$$\downarrow \gamma \gamma$$

$$\downarrow K^{0}{}_{s} \pi^{+} \pi^{-} \pi^{0}$$

$$\downarrow \pi^{+} \pi^{-} \downarrow \gamma \gamma$$

Summary

- ✓ KF Particle is prepared to be installed into PANDA Root. Currently it is put into the development brunch.
- ✓ The interfaces for KF Particle are developed.
- \checkmark Test with a strange particles reconstruction in PANDA Root was performed.
- ✓ The complicated decay topology was investigated: $D^{0*} \rightarrow D^0 \pi^0$ with $D^0 \rightarrow K^0_{s} \pi^+ \pi^- \pi^0$, $\pi^0 \rightarrow \gamma \gamma$ and $K^0_{s} \rightarrow \pi^+ \pi^-$:
 - ✓ Moved from reconstructed tracks to PID candidates:
 - \checkmark adapted for a new structure of the covariance matrix;
 - $\checkmark\,$ changed links to MC particles.
 - $\checkmark\,$ Class for the EMC clusters was added.
 - ✓ Reconstruct π^0 from EMC clusters assumed to be γ .
 - ✓ Reconstruct D^0 and D^{0*} .