

Energy Calibration of the Panda EMC using neutral pions Status Report

Károly Makónyi

December 9, 2014 ¹Department of Physics, Stockholm University

- The purpose of the calibration
- Steps of the energy calibration
- Strategy
- Integration
- Implementation
- Results
- Future plans

- the EMC channels gives different response for the same stimulus due to different reasons for example:
 - 'physics' different light yields, different radiation damage
 - 'electronics' individual (different) signal processing chain

- the EMC channels gives different response for the same stimulus due to different reasons for example:
 - 'physics' different light yields, different radiation damage
 - 'electronics' individual (different) signal processing chain
- the purpose of the calibration to ensure that all the EMC channels gives the same response for the same stimulus

- 'preliminary' calibration with cosmic muons
 - rough calibration, based on the energy deposit in the crystals of a minimum ionising particle (cosmic muons)
 - ${\scriptstyle \bullet}\,$ this serves a calibration which is accurate within 10-15%

- 'preliminary' calibration with cosmic muons
- testbeam-calibration @ Julich
 - practically identical situation as at the HESR will be, but with p-p collisions
 - should serve a proper calibration

- 'preliminary' calibration with cosmic muons
- testbeam-calibration @ Julich
- 'on-line' calibration
 - calibration should be made on-line during data-taking
 - Pro. better control on for example light-yield changes due to temperature instability, radiation damage, ..., etc.
 - Con. the forward part of the EMC will be calibrated more frequently than the backward part of the EMC

 ${\, \bullet \, }$ calibration with 2 γ invariant mass

Energy Calibration of the Panda EMC using neutral pions

- ${\, \bullet \, }$ calibration with 2 γ invariant mass
 - (neutral) pions are the most suitable:

- (neutral) pions are the most suitable:
 - large production cross section
 - narrow peak (accurate determination of the peak position)
 - invariant mass of the pion is very well known

- ${\, \bullet \, }$ calibration with 2 γ invariant mass
 - (neutral) pions are the most suitable:
 - $M_{\gamma_i\gamma_j}^2 = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$

- (neutral) pions are the most suitable:
- $M_{\gamma_i\gamma_j}^2 = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$
 - picking up a set of events where one of the photons is detected in one given crystal/channel $\rightarrow M^2_{\gamma_X\gamma_i} = 2E_{\gamma_X}E_{\gamma_i}(1 \cos \alpha)$

- (neutral) pions are the most suitable:
- $M^2_{\gamma_i\gamma_j} = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$
 - picking up a set of events where one of the photons is detected in one given crystal/channel $\rightarrow M^2_{\gamma_X\gamma_i} = 2E_{\gamma_X}E_{\gamma_i}(1 \cos \alpha)$
 - the deposited energies in the given crystal is assumed to be linearly depending on the measured energy

- (neutral) pions are the most suitable:
- $M^2_{\gamma_i\gamma_j} = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$
 - picking up a set of events where one of the photons is detected in one given crystal/channel $\rightarrow M^2_{\gamma_X\gamma_i} = 2E_{\gamma_X}E_{\gamma_j}(1 \cos \alpha)$
 - the deposited energies in the given crystal is assumed to be linearly depending on the measured energy

•
$$C_X E_{\gamma_X} 2E_{\gamma_j} (1 - \cos \alpha) = C_X M_{\gamma_X \gamma_j}^2 = \mathsf{M}_{\pi^0}^2 \to C_X = \frac{M_{\pi^0}^2}{M_{\gamma_X \gamma_j}^2}$$

- (neutral) pions are the most suitable:
- $M^2_{\gamma_i\gamma_j} = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$
 - picking up a set of events where one of the photons is detected in one given crystal/channel $\rightarrow M^2_{\gamma_X\gamma_i} = 2E_{\gamma_X}E_{\gamma_i}(1 \cos \alpha)$
 - the deposited energies in the given crystal is assumed to be linearly depending on the measured energy

•
$$C_X E_{\gamma_X} 2E_{\gamma_j} (1 - \cos \alpha) = C_X M_{\gamma_X \gamma_j}^2 = \mathsf{M}_{\pi^0}^2 \to C_X = \frac{M_{\pi^0}^2}{M_{\gamma_X \gamma_j}^2}$$

• $E_{\gamma_{i,j}}$ represent the sum of the energies reconstructed in all crystal in the 'cluster'

- (neutral) pions are the most suitable:
- $M_{\gamma_i\gamma_j}^2 = 2E_{\gamma_i}E_{\gamma_j}(1-\cos\alpha)$
 - picking up a set of events where one of the photons is detected in one given crystal/channel $\rightarrow M^2_{\gamma_X\gamma_i} = 2E_{\gamma_X}E_{\gamma_i}(1 \cos \alpha)$
 - the deposited energies in the given crystal is assumed to be linearly depending on the measured energy

•
$$C_X E_{\gamma_X} 2E_{\gamma_j} (1 - \cos \alpha) = C_X M_{\gamma_X \gamma_j}^2 = \mathsf{M}_{\pi^0}^2 \to C_X = \frac{M_{\pi^0}^2}{M_{\gamma_X \gamma_j}^2}$$

- $E_{\gamma_{i,j}}$ represent the sum of the energies reconstructed in all crystal in the 'cluster'
- This is an iterative method

- The calibration constants enters at the 'Reconstruction'
 - Because of for example the reconstruction of the impact point of the particles also depend on their (real) energies

Energy Calibration of the Panda EMC using neutral pions

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)

Energy Calibration of the Panda EMC using neutral pions

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"

Reco-level Cal

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- $\bullet \ \rightarrow \mbox{I divided the calibration} \ into \ two \ parts:$
 - one corrects the energy and also the (energy dependent) position

Reco-level Cal

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- - one corrects the energy and also the (energy

dependent) position

- the other corrects the energy only
 - this second one is fast

Energy Cal

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- $\bullet \rightarrow I$ divided the calibration into two parts:
 - one corrects the energy and also the (energy
 - dependent) position
 - the other corrects the energy only

Energy Cal

Reco-level Cal

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- - one corrects the energy and also the (energy
 - dependent) position
 - the other corrects the energy only

Reco-level Cal

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"

 one corrects the energy and also the (energy dependent) position

6 / 12

 the other corrects the energy only

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- $\bullet \ \rightarrow \mbox{I divided the calibration} \label{eq:static} into \ two \ parts:$
 - one corrects the energy and also the (energy
 - dependent) position
 - the other corrects the energy only

- The calibration constants enters at the 'Reconstruction'
- Neutral particles are selected (using the PID)
- The present PID is "slow"
- $\bullet \ \rightarrow \mbox{I divided the calibration} \label{eq:static} into \ two \ parts:$
 - one corrects the energy and also the (energy
 - dependent) position
 - the other corrects the energy only

The energy-calibrator consists of

- Server
 - select pion-candidates (2-photon events),
 - serves an array of a given number of candidates to the actual iterative calibrator

The energy-calibrator consists of

- Server
- Calibrator (client)
 - does the (iterative) energy calibration (fitting, correcting, ..., described above),

The energy-calibrator consists of

- Server
- Calibrator (client)
- DB (client)
 - stores the calibration constants in some database (file or SQL (presently reads and writes calibration file))

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$, $\pi^0 \eta$, $\pi^0 \eta'$, $\eta \eta$, $\eta \eta'$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta_c$,
 - $\eta_c \gamma$, $\pi^0 \gamma$ events (1/10 weights on every channel)
- $2*10^6$ events with using the DPM generator

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0\pi^0$, $\pi^0\pi^0\pi^0$, $\pi^0\eta$, $\pi^0\eta'$, $\eta\eta$, $\eta\eta'$, $\pi^0\pi^0\eta$, $\pi^0\eta_c$, $\eta_c\gamma$, $\pi^0\gamma$ events (1/10 weights on every channel)
- $2*10^6$ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0\pi^0$, $\pi^0\pi^0\pi^0$, $\pi^0\eta$, $\pi^0\eta'$, $\eta\eta$, $\eta\eta'$, $\pi^0\pi^0\eta$, $\pi^0\eta_c$, $\eta_c\gamma$, $\pi^0\gamma$ events (1/10 weights on every channel)
- $2*10^6$ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)
 - the cosmic-muon-calibrated data is expected to be accurate within $\pm~15\%$

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$, $\pi^0 \eta$, $\pi^0 \eta'$, $\eta \eta$, $\eta \eta'$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta_c$, $\eta_c \gamma$, $\pi^0 \gamma$ events (1/10 weights on every channel)
- 2*10⁶ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)
 - the cosmic-muon-calibrated data is expected to be accurate within $\pm~15\%$
 - $\, \bullet \,$ decalibration by \pm 5% (gaussian, FWHM)

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$, $\pi^0 \eta$, $\pi^0 \eta'$, $\eta \eta$, $\eta \eta'$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta_c$, $\eta_c \gamma$, $\pi^0 \gamma$ events (1/10 weights on every channel)
- 2*10⁶ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)
 - the cosmic-muon-calibrated data is expected to be accurate within $\pm~15\%$
 - ${\scriptstyle \bullet }\,$ decalibration by \pm 5% (gaussian, FWHM)
 - decalibration by \pm 15% (flat)

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$, $\pi^0 \eta$, $\pi^0 \eta'$, $\eta \eta$, $\eta \eta'$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta_c$, $\eta_c \gamma$, $\pi^0 \gamma$ events (1/10 weights on every channel)
- 2*10⁶ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)
 - the cosmic-muon-calibrated data is expected to be accurate within $\pm~15\%$
 - decalibration by \pm 5% (gaussian, FWHM)
 - decalibration by \pm 15% (flat)
 - +15% (half of the channels by +15% the rest with -15%)

- 2^*10^6 events with $\pi^0\pi^0\pi^0$ events
- 2*10⁶ events with $\pi^0 \pi^0$, $\pi^0 \pi^0 \pi^0$, $\pi^0 \eta$, $\pi^0 \eta'$, $\eta \eta$, $\eta \eta'$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta_c$, $\eta_c \gamma$, $\pi^0 \gamma$ events (1/10 weights on every channel)
- 2*10⁶ events with using the DPM generator
- starting with de-calibrated simulation (to mimic the result of the 'preliminary' calibration)
 - the cosmic-muon-calibrated data is expected to be accurate within $\pm~15\%$
 - decalibration by \pm 5% (gaussian, FWHM)
 - decalibration by \pm 15% (flat)
 - $\circ\,$ decalibration by \pm 15% (half of the channels by +15% the rest with -15%)
 - (as reference) no decalibration was used

• Selecting any number of neutrals in the final state

Energy Calibration of the Panda EMC using neutral pions

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND (\measuredangle_{P_1,P_2} < 2)) OR (cluster size < 2)

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND ($\angle P_1, P_2 < 2$)) OR (cluster size < 2)
- The $\gamma\gamma$ invariant masses are filled into histograms

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND (\measuredangle_{P_1,P_2} < 2)) OR (cluster size < 2)
- The $\gamma\gamma$ invariant masses are filled into histograms
- Binned likelihood fit

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND ($\angle P_1, P_2 < 2$)) OR (cluster size < 2)
- The $\gamma\gamma$ invariant masses are filled into histograms
- Binned likelihood fit
 - On the [0.06-0.2 GeV] range

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND (\measuredangle_{P_1,P_2} < 2)) OR (cluster size < 2)
- The $\gamma\gamma$ invariant masses are filled into histograms
- Binned likelihood fit
 - On the [0.06-0.2 GeV] range
 - With a sum of an exponential background and a Novosibirsk signal

- Selecting any number of neutrals in the final state
- Filtering: (($E_{1,2}$ >0.01 GeV) AND (\measuredangle_{P_1,P_2} < 2)) OR (cluster size < 2)
- The $\gamma\gamma$ invariant masses are filled into histograms
- Binned likelihood fit
 - On the [0.06-0.2 GeV] range
 - With a sum of an exponential background and a Novosibirsk signal
 - Stopping criteria:

number of iteration reaches the maximum (50) *OR* $((M_{\pi}^{0}-0.0005) \le (M_{\pi}^{0}) \le (M_{\pi}^{0}+0.0005))$

Number of iterations

Energy Calibration of the Panda EMC using neutral pions

Time for fit/iterations

Energy Calibration of the Panda EMC using neutral pions

Time for fit

Energy Calibration of the Panda EMC using neutral pions

• implementing the un-binned fit

- implementing the un-binned fit
- study the channels where the fits were unsuccessful

- implementing the un-binned fit
- study the channels where the fits were unsuccessful
- benchmarking not only the fit but the whole process

- implementing the un-binned fit
- study the channels where the fits were unsuccessful
- benchmarking not only the fit but the whole process
- testing the full calibration on distributed environment (one server, several calibrator)

- implementing the un-binned fit
- study the channels where the fits were unsuccessful
- benchmarking not only the fit but the whole process
- testing the full calibration on distributed environment (one server, several calibrator)
- writing a GUI which makes some summary plots about the calibration (generally ready)

- implementing the un-binned fit
- study the channels where the fits were unsuccessful
- benchmarking not only the fit but the whole process
- testing the full calibration on distributed environment (one server, several calibrator)
- writing a GUI which makes some summary plots about the calibration (generally ready)
- The PID does too much for my need I need only a yes-or-no answer whether any other detector between the collision point and the EMC was firing or not

- implementing the un-binned fit
- study the channels where the fits were unsuccessful
- benchmarking not only the fit but the whole process
- testing the full calibration on distributed environment (one server, several calibrator)
- writing a GUI which makes some summary plots about the calibration (generally ready)
- The PID does too much for my need I need only a yes-or-no answer whether any other detector between the collision point and the EMC was firing or not
- implementing the connection to the DB (Which one?)

Thank You!

