EMC – Workshop Rauischholzhausen November 24-25, 2014

AGENDA

Subjects to be discussed:

- Crystals
- Photosensors (APD screening, Test procedure, VPTT?)
- Cooling and isolation
- Prototypes (PROTO120, Maxlab results,)
- Stimulated Recovery
- Electronics chain: PA, ASIC, Driver, SADC, Cables, ...)
- Installation @ PANDA site (Rackspace, ...)
- Status on Forward/Backward Endcaps
- Status on Barrel Mechanics
- Timelines

contributions:

- Claudius Schnier:
- Tobias Triffterer:
- Christoph Rosenbaum:
- Stefan Diehl:
- •Till Kuske:
- Rainer Novotny:

Cabeling, Voltage distribution etc. for FW Endcap DCS fürs EMC: alarm system etc.

The status on PROTO 120 Completion of PROTO 120 Status on recovery

News on crystals from SICCAS and CRYTUR

SICCAS ID	T(360	T(420	T(620	LY(T=+18 C, t=100	LY(100	dk(420 nm)	comment SICCAS	LY
	%	%	%	phe/MeV	at T=18C, %	m ⁻¹		SICCAS
limits	≥35	≥ 60	≥70	≥16	> 90	< 1.1		
1451	19,0	58,8	73,8	22,3	94,1	1,92		
1452	25,2	62,9	74,2	22,3	94,1	0,72		
1453	23,2	57,8	75,3	11,1	90,4	3,94		
1454	35,0	67,2	77,8	26,9	93,7	0,69		
1455 rus	10,1	52,5	73,5	15,4	93,9	2,68		
1456	2,0	56,5	73,8	15,6	90,6	6,36	doping	17,1
1457	16,4	42,3	62,9	13,1 at -25 C	87,8	6,32	doping	13,4
1458	20,4	58,8	75,2	17,8	91,3	2,93	doping	22,0
1459	11,3	52,6	68,5	19,2	92,1	2,74	doping	21,1
1460	19,1	45,7	63,6	?	?	5,89	doping and raw materia	15,4
1461	8,8	52,0	65,6	19,7	91,7	3,59	doping and raw materia	20,5
1462	32,5	60,7	74,3	21,9	91,5	0,85	doping and raw materia	17,7
1463	22,9	55,1	67,3	21,5	91,9	0,38	doping and raw materia	19,7
1464	22,7	59,0	74,1	20,5	91,6	0,89	doping and raw materia	23,9
1465 rus	1,8	40,3	66,5	12,9	90,8	2,26		9,3

additional new PWO manufacture

CRYTUR – Turnov, Czech Republic

- R&D phase just started (June 2014)
- Czochralsky technology (identical to BTCP)
- know-how and raw material still available

News (November 20, 2014)

- first good crystal grown
- test samples grown at Prague
- visit and discussion in December

Fig. 1 (a) Photo of PbWO4 crystal grown in oxygen-free atmosphere.(b) 50 ppm Y doped grown in air;(c) La+Y doped grown in N2+0.1%O2 atmosphere

Fig. 2 Sketch of the PbWO4 crystal cut

The Neutral-Particle Spectrometer (NPS)

The NPS is envisioned as a facility in Hall C, utilizing the well-understood HMS and the infrastructure of the new SHMS, to allow for precision (coincidence) cross section measurements of neutral particles (γ , π^0).

Scientific Program:

- **E** E12-13-010 Excl. Deeply Virtual Compton and π^0 Cross Section Measurements (*approved* by PAC40)
- **E** E12-13-007 Measurement of SIDIS π^0 production as Validation of Factorization (*approved* by PAC40)
- □ PR12-13-009 Wide-Angle Compton Scattering (WACS) at 8 &10 GeV Photon Energies
- □ LOI12-13-003 Exclusive Photoproduction of π^0 mesons at large angles (positive comments at PAC40)

NPS Crystal Matrix

High resolution PbWO₄ part from HyCAL

DVCS/Hall A PbF₂ calorimeter

612 PbWO₄ + 200 PbF₂ NPS hybrid crystal matrix

- In ideal conditions would start with brand new PbWO₄
- Taking advantage of existing PbWO₄ crystals from HyCAL, one arrangement is in a 36x30 matrix covering 25 msr at distance of 4 m from target (~1100 crystals)
- Could use PbF₂ crystals from DVCS/Hall A to fill out solid angle if only ~600 PbWO₄ available

Crystal matrix in NPS frame

NPS Frame

 For experiments like Wide Angle Compton Scattering requiring angles
 >=25 degrees NPS can be installed on the other side of the SHMS

Readout Electronic – PCBs

Backplane v1.0

Backplane v1.0:

- Design: 2 x 10 ASICs
- Fits to the Proto 120 geometry
- Complex programming structure
 → Chip ID 1 ..16

Flex-PCB v1.0:

- Not shielded rigid flex PCB
 → pick-up noise
- One HV for both channels
- Only one GND!
- No HV blocking on the flex PCB

Backplane v2.0

Backplane v2.0:

- Design: 2 x 4 ASICs
- Not forseen for the Proto 120 geometry
 → only for lab tests
- Simple programming structure
- One HV for two channels

Flex-PCB v2.0:

- Bouth side shielded rigid flex PCB
- One HV for both channels
- Only one GND!
- HV blocking close to the APD region

2014/2015

Flex-PCB v2.1

Backplane v3.0

Backplane v3.0:

- Design for only 2 x 2 ASICs
- Fits to the Proto 120 geometry
- Simple programming structure
- One HV for each channel!!!
- Separate HV GND

Flex-PCB v2.1:

- Double side shielded rigid flex PCB
- HV separate for each channel
- HV blocking close to the APD region

Peter Wieczorek

EMC Front-End Electronics

EMC digitizer:

- 64 ADC channels (32 dual-gain readout channels)
- 14 bit resolution
- 80-125 MHz sampling rate
- On-line detection of hits, extraction of hit information, pulse pile-up recovery by two Xilinx Kintex-7 FPGAs

Digitizers are located in radiation area → precautions have to be taken against configuration changes and SEU in FPGAs

Pawel Marciniewski 11 Unnsala

Feature-Extraction Algorithm

Precise Amplitude Measurement

The Best "Energy" Measurement 0 **Relative resolution** + Fit Maximum Corrected Maximum Sum of 3 points Corrected sum High gain Pulse integral 0.01 0 2x10³ 4x10³ 6x10³ 8x10³ 10^{4} 10^{4} Pulse amplitude (ADC channels) Integration - the best option?

Time Measurement

Analogue-like implementation: $CFT(n) = MWD(n-d) - R \cdot MWD(n)$ • Delay d = signal rise time • Fraction R - to select most linear part of the signal leading edge (R=1/4) • N - number for the linear regression

• Symmetry against zero level

Pile-up Detection

If samples above threshold satisfy *Int/A* criterion \rightarrow Pulse is detected

Irradiation of Kintex-7 (XC7K325T)

→54 min operation without reconfiguration (incl. safety factor 10)

ADC for EMC - PANDA EMC Readout System

UPPSALA

ADC for EMC - SADC development for PANDA

UPPSALA UNIVERSITET

Α

Ν

DC	ADC_32DR	ADC_64V	ADC_64K			
lodel						
o. of channels	32 (64)	64	64			
ampling rate		80-125 MSPS				
put coupling	DC, positive, negative, diff					
esolution (ampl)	14-bit dual range	14-	bit			
put Connector	uFL	Sam	ntec			
aseline	0V					
put range (dual)	±1.0V, ±60 mV	V ±1.0V, ±100 mV				
oise	100uV					
ata retention/ch.		25us				
put filter	Active-	CR-passive	Active			
	filter/Amplifier		filter/Amplifier			
terface	Optical, SFP, LC-type, 2 Gbit/s					
eature extraction:	P0 Fi Pz Pa PPi PPz Pq	tr window PPn ti +	igger time me=0 PPq (Pe Pq)			

UPPSALA UNIVERSITET

ADC for EMC - ADC_64K_2

List of recent changes/improvements

- 1. Overall error correction
- 2. Input can be galvanically de-coupled from the ground
- 3. Improved analog/digital ground separation
- 4. All low-voltage power supplies can be distributed via backplane connectors
- 5. Space optimization
- 6. Baseline shifting (?)

Pawel Marciniewski, Rauischholzhausen 25.11.2014

UPPSALA

VME64x

ADC for EMC - Data Concentrators

AMC (uTCA)

Forward extremity

Rosier Philippe. - IPNO - 24/11/2014

Backward extremity

Backward extremity

Manifolds for front crystals cooling fixed also on back plate 2x10 cooling tubes PA diam 3/5

Backward extremity

Vacuum box for cooling tubes going out of the barrel

To be defined in spring (other training student (Christopher paid by Giessen)

Pump insulation

(with flowmeter – vacuum – tank – manometer – 1,5kW heater)

Rosier Philippe. – IPNO – 24/11/2014

Cables

Cables from patch panel PCB to the outside:

- Huber+Suhner
 Enviroflex (HV)
- Nexans Filotex (signal) yields attenuation of preamp pulses by 0.18 dB/m
- Ribbon (sensor)
 + LV cables

Summary

Measured cable length:

- HV (Huber+Suhner Enviroflex): 13606 m ightarrow 16 km ordered
- Ribbon cable: 423 m
- Signal (Nexans Filotex): 11554 m ightarrow 12 km ordered

Work in progress:

- Finalize LV cables + routing
- Design of backplate frame cable feedthrough

To do:

• Fix crate positions

Alarm notifications for the PANDA Detector Control System

Tobias Triffterer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

 $\begin{array}{l} {\sf EMC} \ {\sf workshop} \\ {\sf 24^{th}} + {\sf 25^{th}} \ {\sf November} \ {\sf 2014} \end{array}$

Stimulated recovery

T. Kuske

- T = 25°C
- o no ice formation
- VPT readout
- o light pulser

Combined energy resolution

- **1** Crystal with highest energy \rightarrow central crystal
- Output Description of the second s
- **O** LG-information for central crystal and HG-information for peripheral crystals

5900

Implementation of 9 depolished crystals in PROTO 120 (3x3 matrix)

- 9 type 2 crystals depolished at CERN with the setup used for CMS
- One lateral side depolished with $R_a = 0.3 \ \mu m$ (value calculated from CMS data)
- All other sides still polished
- NUF has been measured for all depolished crystals

NUF and LY of the depolished crystals

measured by S. Nazarenko, V. Dormenev

T = +18 °C, time gate = 1 μ s

Stefan Diehl, JLU Gießen

NUF and LY of the depolished crystals

 Depolishing also decreases the influence of radiation damage (30Gy γ) on NUF

measured by S. Nazarenko, V. Dormenev

A. Wilms: Status on APD-screening

delivery rate by Hamamatsu: 350 /week quality check: parameter limits @ 20°C

S11048 2014.11.14 Test Data
No.0814008257-No.0819008647

				M = 100	M = 100
Type No.	Serial No.	Position	$AB(\Lambda)$	VR(V)	ID(A)
S11048	0814008257	D05	418	389,7	4,30E-09
S11048	0814008258	H06	421	$392,\!6$	3,60E-09
S11048	0814008259	C04	420	391,0	4,90E-09
S11048	0814008260	E02	422	392,7	3,10E-09
S11048	0814008261	B03	417	389,4	3,40E-09
S11048	0814008263	D15	418	392,5	1,58E-08
S11048	0814008264	C08	418	389,9	3,00E-09
S11048	0814008265	B09	422	393,9	3,30E-09
S11048	0814008266	C10	421	392,9	3,40E-09
S11048	0814008267	F14	425	396,7	5,20E-09

required for final application: HV for gain 150-200 @ -25°C

set of measurements at \leq 5 temperatures before **and** after irradiation (⁶⁰Co @ GI) comparison: DC **and/or** pulsed light source ??? selected parameters: QE, C, ...

request for a detailed quantitative status of the present capabilities.