Remote Electronics and HV for the PANDA STT Component- and Prototype Studies

PANDA CM, December 9, 2014

Henner Ohm Forschungszentrum Jülich, IKP **Krzysztof Pysz** IFJ PAN Kraków / Forschungszentrum Jülich, IKP Tanja Hahnraths - von der Gracht Forschungszentrum Jülich, IKP Forschungszentrum Jülich, ZEA-2 **Lioubov Jokhovets** Forschungszentrum Jülich, ZEA-2 Andreas Erven Jurek Majewski Forschungszentrum Jülich / U Kraków **Paweł Kulessa** IFJ PAN Kraków / Forschungszentrum Jülich, IKP **Robert Nellen** Forschungszentrum Jülich, IKP Forschungszentrum Jülich, IKP Valery Serdyuk **Peter Wintz** Forschungszentrum Jülich, IKP

Remote Electronics and HV for the PANDA STT Component and Prototype Studies

PANDA CM, December 9, 2014 Henner Ohm, IKP-FJZ

Advantages expected:

- No space problem
- No heat release
- No additional cables for HV and LV needed
- No radiation damage
- All components possibly subject to failure are accessible outside the detector
- Broken tubes in the STT can be decoupled individually from HV

To be demonstrated:

- HV Stability
- Protection against induced parasitic signals ("EMI")
- Still good time resolution
- Technical solutions exist

- To be included into the FADC board
- New design needed
- Low-noise input stage with discrete components
- Components controlling input impedance, gain and shaping easily exchangeable

Improvement of the time resolution with a low-noise amplifier

Signal shapes optimized for analysis with the FADC

Common Cables for Signals & HV

WASA@COSY:

Filotex 75 Ω 1.2 mm Ø 5 m long operating voltage 1400 V over 8 years

PANDA STT Demonstrator:

MK7501 1.1 mm 12 m long HV test at factory: 1000 V routinely operated at 1900 V Lab tests: stable at 4 kV

Don't be a slave of ratings:

3M Twisted Pair Flat Cable Voltage Rating: USA: 300V Canada: 150V EU: <50V tested up to 7 000 Volts !

Cable Connection between the STT and the amplifiers during in-beam tests

Bunches with 32 coaxial cables Shielding: 12 μ m Mylar + 2x50 nm Al Crates with preamplifiers Connector end of the **STT** prototype Beamline

Packing of Signal / HV Cables

Cable Connection to Straw Detectors

WASA@COSY

Coaxial cables are individually plugged onto the central straw detector

Prototype for PANDA @COSY

- 32 Coaxial cables are held by a PCB
- Short cables from the straws with multiple connector
- Ground connection with the body of the detector via Cu strips

To be changed:

- Short connecting cable will be twisted pair or coax
- Everything can become smaller

HV Stability of Cables and Capacitors

How close are we to the limit of HV stabilty ?

Are components destroyed at overvoltage ? Is the effect of discharges reversible ?

<u>Cables:</u>

- Robust also beyond limiting voltage

Capacitors:

- Sparking sometimes 1000 V below limit
- Depends on surface cleanness
- Partial recovery after HV training

Electromagnetic interference: Parasitic signals in straw chambers and application of countermeasures

EMI test area for detectors and electronical components

- Transmitter dipole
- Pulse generator
- Object under test

Reduction of induced signals during shielding progress

Fe-55 signals as a model for average pulse parameters of track signals

Fe-55, Sr-90 and Cosmics Signals averaged over 128 events

Time resolution							
	<u>Amplit.</u> [mV]	<u>Slope</u> [mV / ns]	<u>Time uncertainty</u> [ns]				
RMS noise Fe-55 Cosmics Sr-90	3.5 590 168 176	80 18 18	0.044 0.19 0.19				

Estimated electronical time uncertainty

(previous amplifier, no active timing, close (50 cm) to straw chambers or with 5 / 10 / 20 m cable)

Assumption: timing is derived from the steepest slope, there is no walk

Fe-55	short connect	tion	44 ps	
Sr-90 or cosmics	Normalization: * 4.4		190 ps	
Reduction of gas amplification	$8*10^4 \rightarrow 5*1$	04	300 ps	
Sr-90 or cosmics	thin cable,	10 m long	680 ps	(≜ 23 µm)

Signals with proton beam

COSY beamtime October 2014:

Protons, 1.0 GeV/c, Ar/CO2=90/10, 1800 V, Remote low-noise amplifier

Estimated time resolution including all contributions in the analog chain = 100 ps (Δ 3 μm) The STT operated with remote electronics fulfills TDR specifications !

- 128 channels with low-noise amplifier successfully tested under beam conditions
- Shaping optimized for STT signals
- 1.1 mm Ø cables are safe under HV
- Efficient protection against Electromagnetic Interference
- Spatial resolution near 150 µm achieved

Next steps:

- Design, production and tests of the HV / Signal decoupling connector
- Test of this with the current electronics
- Prototype of the new FADC including the low-noise amplifier
- Measurements at the STT demonstrator at COSY
- Operation at PANDA