# Update on feasibility study of pion-nucleon TDAs measurements through $\pi^0 J/\psi$ in $\bar{\rm P}{\rm ANDA}$

#### **PANDA** Collaboration Meeting

#### **Ermias ATOMSSA**

Institut de Physique Nucléaire d'Orsay

December 9, 2014

- Reminders
- Improvements

Ermias ATOMSSA (IPNO)

- New analysis procedure and some results
- Considerations on other background sources
- Outlook

## Nucleon-to-meson TDAs through $ar{p}p o \pi^0 J/\psi o \pi^0 e^+ e^-$

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



- Occur in collinear factorization of  $\bar{p}p \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 e^+ e^-$  and  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$
- π-N TDAs : paramterizations of hadronic matrix elements as a function of momentum fractions (x<sub>i</sub>), skewness (ξ) and momentum transfer squared (Δ<sup>2</sup> = t/u)
- Universality: non dependece on  $W^2$  and q is one proposed signature of factorization
- Feasibility of measurements to constrain  $\pi$ -N TDAs through
  - Complimentary to already published work M. Carmen Mora Espí

#### Reminder from previous presentation



• Estimated counts rates based on parametrized efficiencies on generator output

• 
$$C_{SIG} = \mathcal{R}_{SIG}^{tot} \cdot \varepsilon_M^{SIG} \cdot \varepsilon_{\pi^0 \pi^+ \pi^-}^{MIS-ID} \approx 1.3 \times 10^4 \times 0.64 \times 0.39 = 3.3 \times 10^3$$
  
•  $C_{BG} = \mathcal{R}_{BG}^{tot} \cdot \varepsilon_t \cdot \varepsilon_M^{SIG} \cdot \varepsilon_{\pi^0 J/\psi}^{PID} \approx 4.0 \times 10^{11} \times 0.05 \times 7.3 \times 10^{-8} = 1.5 \times 10^3$ 

• S/B: about  $C_{SIG}/C_{BG} \approx 2.3$ 

#### Signal generation

- Both small u and t approximations included
- Three different energies ( $p_{\bar{p}} = 5.513$ , 8 and 12 GeV/c)
- Full MC (GEANT+PandaROOT reconstruction) used whenever possible
  - Every step except  $e^+e^-$  EID efficiency for  $\bar{p}p \to \pi^0 J/\psi \to \pi^0 e^+e^-$  analysis
  - Every step except  $\pi^+\pi^-$  mis-id rate for  $\bar{p}p \to \pi^0\pi^+\pi^-$  analysis
- Full analysis chain
  - EID and exclusivity cuts
  - Handling  $\gamma-\gamma$  combinatoric background
  - Background subtraction

## Event generation for $ar{p}p o \pi^0 J/\psi o \pi^0 e^+ e^-$



- ۰ Based on TDA formalism prediction in B. Pire et. al. Phys. Lett. B 724 (2013) 99197
  - Reproduces existing data from Fermi Lab at =5.513 GeV/c
- Two validity ranges
  - Small  $|t| << Q^2$ , forward going  $\pi^0$  (wrt.  $\bar{p}$ ),  $\Delta^2 = t$  Small  $|u| << Q^2$ , backward going  $\pi^0$  (wrt.  $\bar{p}$ ),  $\Delta^2 = u$
- Highly peaked at forward and backward angles



#### Phase space coverage strongly dependent on energy

• Low beam energies (eg.  $p_{\bar{\rho}}^{lab} = 5.513 \text{ GeV/c}$ ): all available phase space is within validity range (Small |t| for  $0 < \cos \theta_{-0}^{CM} < 1$ , small |u| for  $-1 < \cos \theta_{-0}^{CM} < 0$ )

lacksquare Higher beam energies: decay products too forward/backward  $\Longrightarrow$  poor efficiency

Number of events simulated normalized to integrated cross section over validity range



Phase space coverage strongly dependent on energy

• Low beam energies (eg.  $p_{\bar{p}}^{lab} = 5.513 \text{ GeV/c}$ ): all available phase space is within validity range (Small |t| for  $0 < \cos \theta_{\pi^0}^{CM} < 1$ , small |u| for  $-1 < \cos \theta_{\pi^0}^{CM} < 0$ )

ullet Higher beam energies: decay products too forward/backward  $\implies$  poor efficiency

• Number of events simulated normalized to integrated cross section over validity range



- Phase space coverage strongly dependent on energy
- Low beam energies (eg.  $p_{\bar{p}}^{lab} = 5.513 \text{ GeV/c}$ ): all available phase space is within validity range (Small |t| for  $0 < \cos \theta_{\pi^0}^{CM} < 1$ , small |u| for  $-1 < \cos \theta_{\pi^0}^{CM} < 0$ )
- $\bullet \ \ {\sf Higher \ beam \ energies: \ decay \ products \ too \ forward/backward \ \Longrightarrow \ poor \ efficiency }$
- Number of events simulated normalized to integrated cross section over validity range



- Phase space coverage strongly dependent on energy
- Low beam energies (eg.  $p_{\bar{p}}^{lab} = 5.513 \text{ GeV/c}$ ): all available phase space is within validity range (Small |t| for  $0 < \cos \theta_{\pi^0}^{CM} < 1$ , small |u| for  $-1 < \cos \theta_{\pi^0}^{CM} < 0$ )
- Higher beam energies: decay products too forward/backward  $\implies$  poor efficiency
- Number of events simulated normalized to integrated cross section over validity range

# Event rates for $\bar{p}p \to \pi^0 J/\psi \to \pi^0 e^+ e^-$



Number of simulated events (assuming 2 fb<sup>-1</sup>)

- From integrated rates within the validity range
- 28k at  $p_{\bar{p}}$ =5.513 GeV/c, 24k at  $p_{\bar{p}}$ =8 GeV/c, and 15k at  $p_{\bar{p}}$ =12 GeV/c
- Very slow decay as a function of p<sub>p</sub>



DPM used as event generator for spectra

- Cross sections were set to intra(extra)polation of closest available data points
  - 0.2 mb ( $p_{\bar{p}}$ =5.513 GeV/c), 0.05 mb ( $p_{\bar{p}}$ =8 GeV/c) and 0.001 mb (=12 GeV/c)
  - Decay rate much faster than  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  (comes at a cost of signal efficiency)
- Number of events estimated to survive EID cuts on charged pion were passed to full GEANT simulation (π<sup>0</sup> 's are analyzed in the full GEANT MC)

### **Electron Identification**



- Signal: Accept electrons with a probability set to the efficiency parametrized as a function of true p and  $\theta$
- Background: Number of events already takes into account EID: accept all tracks
- EID efficiency drops significantly at higher energies
- After EID, require only one candidate  $e^+e^-$  in event
  - For  $\bar{p}p \rightarrow \pi^0 \pi^+ \pi^-$  this condition is not applied to avoid double counting
  - Instead, best MC truth matching pair is accepted as the only pair in the event

## Electron Identification



- Signal: Accept electrons with a probability set to the efficiency parametrized as a function of true p and  $\theta$
- Background: Number of events already takes into account EID: accept all tracks
- EID efficiency drops significantly at higher energies
- After EID, require only one candidate e<sup>+</sup>e<sup>-</sup> in event
  - For  $\bar{p}p \rightarrow \pi^0 \pi^+ \pi^-$  this condition is not applied to avoid double counting
  - Instead, best MC truth matching pair is accepted as the only pair in the event

## $\pi^{\rm 0}$ selection



- Significant combinatoric background from neutral candidates
- Distinct signal opening angle energy correlation from combinatoric background
- Sufficient to reduce background with minimal cost on true  $\pi^0$  's
- In addition a mass cut of  $0.1 < M_{\gamma-\gamma} < 0.165$  is applied before subsequent steps

ELE NOR

## $\pi^0$ selection



- Significant combinatoric background from neutral candidates
- Distinct signal opening angle energy correlation from combinatoric background
- Sufficient to reduce background with minimal cost on true  $\pi^0$  's
- In addition a mass cut of  $0.1 < M_{\gamma-\gamma} < 0.165$  is applied before subsequent steps

ELE NOR

#### Exclusivity and kinematic cuts

- At this point, there is one  $e^+e^-$  pair and any number of  $\gamma\gamma$  pairs in event
- The most back to back  $\gamma\gamma$  pair is picked
- Potentially an additional cut on  $\Delta \phi$  and  $\Delta \theta$  could be applied, but is not useful against  $\bar{p}p \rightarrow \pi^0 \pi^+ \pi^-$  (not applied here)



PANDA Collaboration Meeting, TDAs

#### All charged tracks

- Require EID (Only signal)
- Require N<sub>e+e-</sub> = 1 (Truth match for BG)
- Require  $N_{\pi^0} > 0$
- Pick most BtoB  $\gamma$



- Properly normalized signal and background rates for  $p_{\bar{p}}=5.513$  GeV/c at 2 fb<sup>-1</sup>
- Kinematic region: 0.44 < |t| < 0.63 or 0.44 < |u| < 0.63 in both signal and background



- Properly normalized signal and background rates for  $p_{\bar{p}}=5.513$  GeV/c at 2 fb<sup>-1</sup>
- Kinematic region: 0.44 < |t| < 0.63 or 0.44 < |u| < 0.63 in both signal and background



• Properly normalized signal and background rates for  $p_{\bar{p}}=5.513$  GeV/c at 2 fb<sup>-1</sup>

• Kinematic region: 0.44 < |t| < 0.63 or 0.44 < |u| < 0.63 in both signal and background



• Properly normalized signal and background rates for  $p_{\bar{p}}=5.513$  GeV/c at 2 fb<sup>-1</sup>

• Kinematic region: 0.44 < |t| < 0.63 or 0.44 < |u| < 0.63 in both signal and background



• Properly normalized signal and background rates for  $p_{\bar{p}}=5.513$  GeV/c at 2 fb<sup>-1</sup>

• Kinematic region: 0.44 < |t| < 0.63 or 0.44 < |u| < 0.63 in both signal and background



- Yield counts in 2.96  $< M_{e^+e^-} [GeV/c^2] < 3.22$
- Background cross sections already highly suppressed wrt. to signal at higher beam energies
- Most severe efficiency loss comes from EID step

• Step after  $N_{\pi^0} > 0$  most comparable to previous analysis, with some differences

- Reconstruction efficiency was not taken into account previous analysis
- Efficiency for  $\pi^0$  lower than the parametrization previously used (based on single  $\pi^0$  simulation) maybe due to high neutral candidate rate



• Yield counts in 2.96  $< M_{e^+e^-} [GeV/c^2] < 3.22$ 

Background cross sections already highly suppressed wrt. to signal at higher beam energies

- Most severe efficiency loss comes from EID step
- Step after  $N_{\pi^0} > 0$  most comparable to previous analysis, with some differences
  - Reconstruction efficiency was not taken into account previous analysis
  - Efficiency for  $\pi^0$  lower than the parametrization previously used (based on single  $\pi^0$  simulation) maybe due to high neutral candidate rate

### t dependence of efficiency



- Reasonable efficiency at lowest beam energy
- Very small to no efficiency for the small |u| validity range at higher beam energies
- NB: cutoffs in t distribution are **NOT** an experimental limitation, but rather imposed by the validity range of the TDA formalism used for event generation

Ermias ATOMSSA (IPNO)

PANDA Collaboration Meeting, TDAs

Dec. 9, 2014 15 / 18

#### Differential mass plots at $p_{\bar{p}} = 5.513 \text{ GeV/c}$



• Non negligible background that can be subtracted

#### Differential mass plots at $p_{\bar{p}} = 8.0 \text{ GeV/c}$



• Background is less of an issue at higher beam energies

#### Differential mass plots at $p_{\bar{p}}$ = 12.0 GeV/c



• Background is less of an issue at higher beam energies

#### • $J/\psi$ decay to $\pi^+\pi^-$

- Very low BR  $(1.5 \times 10^{-4})$ , in addition to suppression by EID
- Not really a background if it could be reconstructed
- Multi pion events
  - Low probability of being reconstructed as  $\pi^+\pi^ \pi^0$
  - Can further be suppressed by missing mass cut

#### • $\bar{p}p \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 e^+ e^-$

- Can not be reduced with PID or kinematic cuts
- x-section under the J/ $\psi$  mass peak (2 $\sigma$ )  $\approx$ 0.048 pb<sup>-1</sup>
- Rate  $\approx <1\%$  of signal

#### Summary and outlook

• Various improvements to  $\pi$ -N TDA feasibility study through  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$ 

- Full MC used as much as possible,
- Beam energy dependence explored
- Both forward and backward validity regions
- Full analysis chain

• Study of  $\pi$ -N TDA in  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  feasible at all beam energies considered

• S/B  ${\approx}4$  at 5.513 GeV/c²,  ${\approx}20$  at 8 GeV/c² and  ${\approx}50$  at 12 GeV/c²,

• Some items still on the to do list

- Treatment of EID in  $\bar{p}p 
  ightarrow \pi^0 J/\psi 
  ightarrow \pi^0 e^+ e^-$  with full MC
- Better parametrization of  $\pi^+\pi^-$  efficiency
- More quantitative look into other background sources
- Proper signal counting, and efficiency correction
- Exploring kinematic fit for additional rejection

Stay tuned

I= nan

• • = • • = •

Image: Image:

#### Summary and outlook

• Various improvements to  $\pi$ -N TDA feasibility study through  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$ 

- Full MC used as much as possible,
- Beam energy dependence explored
- Both forward and backward validity regions
- Full analysis chain
- Study of  $\pi$ -N TDA in  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  feasible at all beam energies considered
  - S/B  ${\approx}4$  at 5.513 GeV/c²,  ${\approx}20$  at 8 GeV/c² and  ${\approx}50$  at 12 GeV/c²,

Some items still on the to do list

- Treatment of EID in  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  with full MC
- Better parametrization of  $\pi^+\pi^-$  efficiency
- More quantitative look into other background sources
- Proper signal counting, and efficiency correction
- Exploring kinematic fit for additional rejection

Stay tuned

ELE NOR

• • = • • = •

#### Summary and outlook

• Various improvements to  $\pi$ -N TDA feasibility study through  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$ 

- Full MC used as much as possible,
- Beam energy dependence explored
- Both forward and backward validity regions
- Full analysis chain
- Study of  $\pi$ -N TDA in  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  feasible at all beam energies considered
  - S/B  ${\approx}4$  at 5.513 GeV/c<sup>2</sup>,  ${\approx}20$  at 8 GeV/c<sup>2</sup> and  ${\approx}50$  at 12 GeV/c<sup>2</sup>,
- Some items still on the to do list
  - Treatment of EID in  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$  with full MC
  - Better parametrization of  $\pi^+\pi^-$  efficiency
  - More quantitative look into other background sources
  - Proper signal counting, and efficiency correction
  - Exploring kinematic fit for additional rejection
- Stay tuned

ELE NOR

A B F A B F

#### Backup

三日 のへで

・ロト ・ 日 ・ ・ ヨ ・ ・

#### Generated distributions for signal simulation



- Highly peaked at forward and backward angles
- Integrated rates with assumed luminosity of 2 fb<sup>-1</sup>
  - 28k at  $p_{\bar{p}}=5.513$  GeV/c, 24k at  $p_{\bar{p}}=8$  GeV/c, and 15k at  $p_{\bar{p}}=12$  GeV/c
  - Very slow decay as a function of p<sub>p</sub>

#### Generated distributions for signal simulation



- Highly peaked at forward and backward angles
- Integrated rates with assumed luminosity of 2 fb<sup>-1</sup>
  - 28k at  $p_{\bar{p}}$ =5.513 GeV/c, 24k at  $p_{\bar{p}}$ =8 GeV/c, and 15k at  $p_{\bar{p}}$ =12 GeV/c
  - Very slow decay as a function of p<sub>p</sub>

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



• Occur in collinear factorization of  $\bar{p}p \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 e^+ e^-$  and  $\bar{p}p \rightarrow \pi^0 J/\psi \rightarrow \pi^0 e^+ e^-$ 

- Valid only for large values of  $s = (p_N + p_{\bar{N}})^2 = W^2$ 
  - Backward kinematics (small |u|),  $\pi^0$  in direction of nucleon (probes  $\pi$ -N TDAs )
  - Forward kinematics (small |t|),  $\pi^0$  in direction of anti-nucleon (probes  $\pi$ - $\bar{N}$  TDAs )
- CF: Hard sub-process amplitude

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



 π-N TDA : Fourier transform of non-diagonal (baryon-to-meson transition) matrix elements of non local three (anti-)quark operators on the light cone:

 $<\pi^{0}(p_{\pi})|arepsilon_{c_{1}c_{2}c_{3}}u_{
ho}^{c_{1}}(\lambda_{1}n)u_{ au}^{c_{2}}(\lambda_{2}n)u_{\xi}^{c_{3}}(\lambda_{3}n)|N^{p}(p_{N},S_{N})>$ 

parameterized as a function of momentum fractions  $(x_i)$ , skewness  $(\xi)$  and momentum transfer squared  $(\Delta^2 = t/u \text{ in fwd/bwd kinematics resp.})$  independent of  $W^2$  and q

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



• DAs: Diagonal matrix elements of non local three (anti-)quark operators on the light cone  $< 0|\varepsilon_{c_1c_2c_3}u_{\rho}^{c_1}(\lambda_1 n)u_{\tau}^{c_2}(\lambda_2 n)u_{\xi}^{c_3}(\lambda_3 n)|N^{p}(p_N, S_N) >$ 

J-P. Lansberg et. al. Phys. Rev. D 75 (2007) 074004



Feasibility study completed by M. Carmen Mora Espí (submitted to EPJA)

- Forward and backward kinematic regions, at  $s=5~GeV^2$  and  $s=10~GeV^2$
- Expected signal event rate for 2 fb<sup>-1</sup> is 3350 (@ s=5 GeV<sup>2</sup>) and 465 (@ s=10 GeV<sup>2</sup>)
- S/B is assumed  $\sigma(\bar{p}p \to \pi^0 \gamma^* \to \pi^0 e^+ e^-) / \sigma(\bar{p}p \to \pi^0 \pi^+ \pi^-) \approx 10^{-6}$
- Cross-section measurements are readily feasible under this assumption