Update on TDA measurements with $p\bar{p} \rightarrow \pi^0 e^+ e^-$ reaction based on EPJA referees' comments: Test of factorisation

María Carmen Mora Espí

Helmholz Institut - Mainz

moraespi@kph.uni-mainz.de

PANDA meeting - Jülich Electromagnetic Processes Session December 9th, 2014

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 Introduction

- 2 Motivation for the New Analysis
- Summary of Previous Analysis
- 4 Results of the New Analysis
- **5** Summary and Conclusions

Image: A matrix and a matrix

Transition Distribution Ampliltudes

TDA:

- New non-perturbative objects
 - Hard scale: high momentum transfer
 - Low transversal momentum for the π^0
- Transition between a Baryon and a Meson
- Information about the Meson-cloud inside the proton
 - Fourier transform of a Matrix Element of a three-quark light-cone local operator
 - Generalization of GPDs

In CM of $\overline{\mathbf{P}}$ ANDA π^0 backward \rightarrow emmited by p π^0 forward \rightarrow emmited by \overline{p}

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experimently accessible through $\bar{p}p \rightarrow \gamma^{\star}\pi^{0} \rightarrow e^{+}e^{+}\pi^{0}$ which admits QCD collinear factorisation in terms of Distribution Amplitudes and Transition Distribution Amplitudes

Validity of QCD factorization and access to TDAs

 \rightarrow kinematics accesible by **PANDA**

Studies based on: J. P. Lansberg et al., Phys Rev D 76, 111502(R) (2007)

TDAs factorisation

Two subprocesses, $p\bar{p} \rightarrow \gamma^*$ and $\gamma^* \rightarrow e^+e^-$, accept factorized description when: • $q^2 \sim s$

• $t \ll q^2$ or $u \ll q^2 \Rightarrow \pi^0$ emmitted in \bar{p} direction(fw) or in the p direction (bw)

Sent to EPJA:

- Analysis of Signal Reconstruction Efficiency
- Analysis of Background Suppression
- Study of the Precission of Measuremet of the Signal Cross Section

Comments of the EPJA Referees:

- The analysis would be more complete if we include the test of factorisation
 - q² factorisation:

 $rac{d\sigma}{dq^2}\sim rac{1}{(q^2)^5}$

• $\cos \theta^{\star}$ factorisation:

 $\frac{d\sigma}{d\cos\theta^{\star}} \sim \left(1 + 1 \cdot \cos^2\theta^{\star}\right)$

A B A B A B A

Simulation of $ar{p} p ightarrow e^+ e^- \pi^0$ and $ar{p} p ightarrow \pi^+ \pi^- \pi^0$

Signal: $\bar{p}p \rightarrow e^+e^-\pi^0$

- $W^2 = 5 \text{ GeV}^2$ and 10 GeV^2 ($W^2 = s$)
- π^0 Forward and Backward \rightarrow 4 simulations
- $\frac{d\sigma}{dq^2}$ calculated for π -transverse momentum $\Delta_{T_{\pi^0}} = 0$,
- extrapolated over a $\Delta_{T_{\pi^0}} < 0.5 \, {
 m GeV}$ and $[q^2_{min}, \, q^2_{max}]^1$

Input for the Event Generator

- No data
- The same angular distribution as the signal
- Cosidered to be 10⁶ times higher

Event selection: Combinations of $\pi^0 + e^+ + e^-$ candidates per event

- Particle identification cuts (PID):
 - Two charged tracks
 - One positive very tight electron and one negative very tight electron
 - Two photons reconstructing a π^0
- Kinematical fit:
 - Used only to improve the quality of the data, but no cuts on CL or χ^2 are applied.

Kinematic region selection (Factorization validity)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary of the results presented in arXiv:1409.0865v1

Background polution: Few %@ low q^2 ;

```
< 20\%@ higher q^2
```

```
4.- Measured Cross Secction
s = 5 \text{ GeV}^2, \pi^0 \text{ forward}
```


New analysis: Test of factorisation, term on $(1 + \cos^2 \theta^*)$

$$\left. \frac{d\sigma}{dtdq^2 d\cos\theta^{\star}} \right|_{\Delta_{T}=0} = \frac{\kappa}{s-4M^2} \frac{1}{(q^2)^5} (1+\cos^2\theta^{\star}) \Rightarrow \frac{d\sigma}{d\cos^2\theta^{\star}} \sim (1+1\cdot\cos^2\theta^{\star})$$

Fit function: $f(\cos^2 \theta) = D \cdot (1 + C \cdot \cos^2 \theta) \xrightarrow{\text{bin average}} g(x) = \frac{1}{a} \int_{x-a/2}^{x+a/2} D \cdot (1 + C \cdot x^2) dx$ with $x = \cos \theta$

M. C. Mora Espí (HIM)

Update on TDA measurements with $p\bar{p}
ightarrow \pi^0 e^+ e^-$

New analysis: Test of factorisation, term on $\frac{1}{(q^2)^5}$ (I)

$$\left. \frac{d\sigma}{dtdq^2 dcs\theta_{\ell}^{\star}} \right|_{p_{T}=0} = \frac{\kappa}{s-4M^2} \frac{1}{(q^2)^5} \left(1 + \cos^2 \theta^{\star}\right) \Rightarrow \frac{d\sigma}{dq^2} \sim \frac{1}{(q^2)^5}$$

Fit function:
$$f(q^2) = B \xrightarrow[q^2]{a} \xrightarrow{\text{bin average}} g(x) = \frac{1}{a} \int_{x-a/2}^{x+a/2} B \frac{1}{x^4} dx$$
 with $x = q^2$

M. C. Mora Espí (HIM)

December 9th, 2014 10 / 1

New analysis: Test of factorisation, term on $\frac{1}{(a^2)^5}$ (II)

$$\left. \frac{d\sigma}{dtdq^2dcos\theta^{\star}} \right|_{P_T=0} = \frac{\kappa}{s-4M^2} \frac{1}{(q^2)^5} (1+\cos^2\theta^{\star}) \Rightarrow \frac{d\sigma}{dq^2} \sim \frac{1}{(q^2)^5}$$

Fit function:
$$f(q^2) = B \xrightarrow[(q^2)]{a} \xrightarrow{\text{bin average}} g(x) = \frac{1}{a} \int_{x-a/2}^{x+a/2} B \frac{1}{x^4} dx$$
 with $x = q^2$

Reweighted

M. C. Mora Espí (HIM)

Update on TDA measurements with $p\bar{p}
ightarrow \pi^0 e^+ e^-$

Summary

- The Analysis have been extended following the comments of the referees.
- Thanks to that a mistake in the cuts for $\cos \theta_{lab} < -0.83$ was found and corrected.
- A problem with the dependence of q^2 in the event generator was also found.
- The dependence of q^2 has been corrected reweighting the data and fitting again

Conclusions:

- We can measure the factorization with an accuracy:
 - $\langle A \rangle \pm \sigma_{n-1} = 5.15 \pm 0.13$ for the scaling factor of $\frac{1}{(a^2)^A}$,
 - and $< C > \pm \sigma_{n-1} = 0.925 \pm 0.377$ for the $(1 + C \cdot \cos \theta^{\star})$ dependence.
- After correcting the small errors in the Analysis no changes in the conclusions of the paper have been found.

THANKS FOR LISTENING

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A