

Theory and HPC

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

HIC for FAIR Physics Day: HPC Computing, FIAS, Frankfurt am Main

11 November 2014

The holy grail of heavy-ion physics:

and temperature

Physics at FAIR

FAIR energies are well suited to study dense and hot nuclear matter :

- a phase transition to QGP
- in-medium effects of hadrons
- chiral symmetry restoration

Way to study:

Experimental energy scan of different observables in order to find an ,anomalous' behavior by comparing with theory

Dynamical models of HIC!

Dynamical models for HIC

Theoretical description of 'in-medium effects'

In-medium effects = changes of particle properties in the hot and dense baryonic medium; example – vector mesons, strange mesons

Many-body theory:

Strong interaction → large width = short life-time

→ broad spectral function → quantum object

How to describe the dynamics of broad strongly interacting quantum states in transport theory?

semi-classical BUU

first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations

Semi-classical BUU equation

Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation) - propagation of particles in the self-generated Hartree-Fock mean-field potential U(r,t) with an on-shell collision term:

$$\frac{\partial}{\partial t}f(\vec{r},\vec{p},t) + \frac{\vec{p}}{m}\vec{\nabla}_{\vec{r}} f(\vec{r},\vec{p},t) - \vec{\nabla}_{\vec{r}}U(\vec{r},t) \vec{\nabla}_{\vec{p}}f(\vec{r},\vec{p},t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

Ludwig Boltzmann

collision term: elastic and inelastic reactions

 $f(\vec{r}, \vec{p}, t)$ is the single particle phase-space distribution function - probability to find the particle at position r with momentum p at time t

□ self-generated Hartree-Fock mean-field potential:

$$U(\vec{r},t) = \frac{1}{(2\pi\hbar)^3} \sum_{\beta_{occ}} \int d^3r' \, d^3p \, V(\vec{r}-\vec{r}',t) \, f(\vec{r}',\vec{p},t) + (Fock \ term)$$

□ Collision term for $1+2 \rightarrow 3+4$ (let's consider fermions) :

$$I_{coll} = \frac{4}{(2\pi)^3} \int d^3 p_2 \, d^3 p_3 \, \int d\Omega \, |v_{12}| \, \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \cdot \frac{d\sigma}{d\Omega} (1 + 2 \to 3 + 4) \cdot P$$

Probability including Pauli blocking of fermions: $P = f_3 f_4 (1 - f_1)(1 - f_2) - \frac{f_1 f_2 (1 - f_3)(1 - f_4)}{\text{Gain term: 3+4} + 1 + 2}$ Loss term: 1+2-3+4

Semi-classical on-shell BUU: applies for small collisional width, i.e. for a weakly interacting systems of particles

How to describe strongly interacting systems?!

Quantum field theory ->

Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

Green functions S[<]/self-energies Σ :

Integration over the intermediate spacetime

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$ $iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$ $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$ $iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$

Leo Kadanoff

 \Box Life time $\tau = \frac{\pi c}{r}$

From Kadanoff-Baym equations to generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

<u>Backflow term</u> incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2 - M^2)$

□ GTE: Propagation of the Green's function $iS^{<}_{XP}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}), but also on their properties, interactions and correlations (via A_{XP})

Spectral function:
$$A_{XP} = \frac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

 $\Gamma_{XP} = -Im\Sigma_{XP}^{ret} = 2p_0\Gamma$ – ,width' of spectral function = reaction rate of particle (at space-time position X) 4-dimentional generalizaton of the Poisson-bracket:

 $\diamond \{ F_1 \} \{ F_2 \} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Employ testparticle Ansatz for the real valued quantity i S[<]_{XP} -

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \ \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \ \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

General testparticle off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \\ \text{with} \quad F_{(i)} &\equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial}{\partial\epsilon_{i}} \Gamma_{(i)} \right] \end{split}$$

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A}(X,\vec{P},M^2) \underline{A}(X,\vec{P}_2,M_2^2) \underline{A}(X,\vec{P}_3,M_3^2) \underline{A}(X,\vec{P}_4,M_4^2) \\ & |\underline{G}((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2 \ \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \, \bar{f}_{X\vec{P}M^2} \, \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} \, N_{X\vec{P}_2M_2^2} \, \bar{f}_{X\vec{P}_3M_3^2} \, \bar{f}_{X\vec{P}_4M_4^2} \,] \\ & \text{, gain' term} \\ \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly for fermions $Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dM_{2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}} Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dP_{0,2}^{2}}{2}}_{\text{additional integration}}$

The transport approach and the particle spectral functions are fully determined once the **in-medium transition amplitudes G** are known in their **off-shell dependence!**

In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell dependence $|G((\vec{P}, M^2) + (\vec{P}_2, M_2^2) \rightarrow (\vec{P}_3, M_3^2) + (\vec{P}_4, M_4^2))|^2_{\mathcal{A},S}$ Coupled channel G-matrix approach

Transition probability :

$$P_{1+2\to 3+4}(s) = \int d\cos(\theta) \ \frac{1}{(2s_1+1)(2s_2+1)} \sum_i \sum_{\alpha} G^{\dagger}G$$

with $G(p,\rho,T)$ - G-matrix from the solution of coupled-channel equations:

For strangeness:

D. Cabrera, L. Tolos, J. Aichelin, E.B., arXiv:1406.2570; W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59

Collision width in off-shell transport model

Total width = collision width + decay width : $\Gamma = \Gamma_{coll} + \Gamma_{dec}$

In the vacuum: $\Gamma = \Gamma_{dec}$

Example: Collision width Γ_{coll} for 1+2->3+4 process – defined from the loss term of the collision integral I_{coll} :

(similar for the n<->m reactions!)

 $-I_{coll}(loss) = \Gamma_{coll}(X, \vec{P}, M^2) N_{X\vec{P} M^2} \qquad \Gamma_{XP} = -Im\Sigma_{XP}^{ret} = 2p_0\Gamma$

 $\Gamma_{coll}(X,\vec{P},M^2) = Tr_2 Tr_3 Tr_4 A(X,\vec{P},M^2) A(X,\vec{P}_2,M_2^2) A(X,\vec{P}_3,M_3^2) A(X,\vec{P}_4,M_4^2)$ $\times |G((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{AS}^2 \delta^{(4)}(P + P_2 - P_3 - P_4) N_{X\bar{P}_2M_2^2} \bar{f}_{X\bar{P}_3M_3^2} \bar{f}_{X\bar{P}_4M_4^2}$

Collision width is defined by all possible interactions in the local cell

! Assumptions used in transport calculations for V-mesons (to speed up calculations):

• Collision width in low density approximation: $\Gamma_{coll} = \gamma \rho < \upsilon \sigma_{VN}^{tot} >$

• replace < $\upsilon \sigma_{VN}^{tot}$ by averaged value G=const: $\Gamma_{coll} = \gamma \rho G$

(Works well – cf. low density approximation vs. the full dynamical calculation of Γ_{Coll} in Ref. E.B., NPA696 (2001) 761)

Mean-field potential in off-shell transport model

Many-body theory: Interacting relativistic particles have a complex self-energy:

 $\Sigma_{XP}^{ret} = Re\Sigma_{XP}^{ret} + i Im\Sigma_{XP}^{ret}$

The neg. imaginary part $\Gamma_{XP} = -Im\Sigma_{XP}^{ret} = 2p_0\Gamma$ is related via $\Gamma = \Gamma_{coll} + \Gamma_{dec}$

to the inverse livetime of the particle $\tau \sim 1/\Gamma$.

 \Box The collision width Γ_{coll} is determined from the loss term of the collision integral I_{coll}

□ By dispersion relation we get a contribution to the real part of self-energy:

$$Re \Sigma_{XP}^{ret}(p_0) = P \int_0^\infty dq \frac{Im \Sigma_{XP}^{ret}(q)}{(q-p_0)}$$

that gives a mean-field potential U_{XP} via:

$$Re\Sigma_{XP}^{ret}(p_0)=2p_0U_{XP}$$

→ the complex self-energy relates in a self-consistent way to the self-generated mean-field potential and collision width (inverse lifetime)

Detailed balance on the level of 2<->n: treatment of multi-particle collisions in transport approaches

W. Cassing, NPA 700 (2002) 618

Generalized collision integral for *n* <->*m* reactions:

$$I_{coll} = \sum_{n} \sum_{m} I_{coll}[n \leftrightarrow m]$$

$$\begin{split} I_{coll}^{i}[n \leftrightarrow m] &= \\ \frac{1}{2} N_{n}^{m} \sum_{\nu} \sum_{\lambda} \left(\frac{1}{(2\pi)^{4}} \right)^{n+m-1} \int \left(\prod_{j=2}^{n} d^{4}p_{j} \ A_{j}(x,p_{j}) \right) \left(\prod_{k=1}^{m} d^{4}p_{k} \ A_{k}(x,p_{k}) \right) \\ &\times A_{i}(x,p) \ W_{n,m}(p,p_{j};i,\nu \mid p_{k};\lambda) \ (2\pi)^{4} \ \delta^{4}(p^{\mu} + \sum_{j=2}^{n} p_{j}^{\mu} - \sum_{k=1}^{m} p_{k}^{\mu}) \\ &\times [\tilde{f}_{i}(x,p) \ \prod_{k=1}^{m} f_{k}(x,p_{k}) \prod_{j=2}^{n} \tilde{f}_{j}(x,p_{j}) - f_{i}(x,p) \prod_{j=2}^{n} f_{j}(x,p_{j}) \prod_{k=1}^{m} \tilde{f}_{k}(x,p_{k})]. \end{split}$$

 $\tilde{f} = 1 + \eta f$ is Pauli-blocking or Bose-enhancement factors; η =1 for bosons and η =-1 for fermions

 $W_{n,m}(p,p_j;i,
u\mid p_k;\lambda)$ is a transition probability

Antibaryon production in heavy-ion reactions

dynamics !

□ important for antiproton, antilambda

 \rightarrow approximate equilibrium of annihilation and recreation

From hadrons to partons

In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium (transport) model with >explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

QGP phase described by

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)₁₆

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

DQPM describes **QCD** properties in terms of **,resummed' single-particle Green's functions – in the sense of a two-particle irreducible (2PI) approach:**

Gluon propagator: $\Delta^{-1} = \mathbf{P}^2 - \Pi$ gluon self-energy: $\Pi = M_g^2 - i2\Gamma_g \omega$

Quark propagator: $S_q^{-1} = P^2 - \Sigma_q$ quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$

the resummed properties are specified by complex self-energies which depend on temperature:

- -- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_q , M_g);
- -- the imaginary part describes the interaction width of partons (Γ_q, Γ_g)

space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density and the mean-field potential (1PI) for quarks and gluons (U_q, U_g)

2PI framework guaranties a consistent description of the system in- and out-off equilibrium on the basis of Kadanoff-Baym equations with proper states in equilibrium
 A. Peshier, W. Cassing, PRL 94 (2005) 172301;

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

<u>Properties</u> of interacting quasi-particles: massive quarks and gluons (g, q, q_{bar}) with Lorentzian spectral functions :

$$(i=q,\overline{q},g) \qquad \rho_i(\omega,T) = \frac{4\omega I_i(T)}{\left(\omega^2 - \overline{p}^2 - M_i^2(T)\right)^2 + 4\omega^2 \Gamma_i^2(T)}$$

2

 T/T_c

8 10

18

6

• Modeling of the quark/gluon masses and widths \rightarrow HTL limit at high T

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Parton Hadron String Dynamics

I. From hadrons to QGP:

- Initial A+A collisions:
 - string formation in primary NN collisions
 - strings decay to pre-hadrons (B baryons, m mesons)
- Formation of QGP stage by dissolution of pre-hadrons into massive colored quarks + mean-field energy based on the Dynamical Quasi-Particle Model (DQPM) which defines quark spectral functions, masses M_q(ε) and widths Γ_q(ε) + mean-field potential U_q at given ε-local energy density (related by IQCD EoS to T temperature in the local cell)
- II. Partonic phase QGP:
- quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM
- in self-generated mean-field potential for quarks and gluons U_q , U_g
- EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)
- (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM
- III. <u>Hadronization:</u> based on DQPM
- massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states -,strings' (strings act as ,doorway states' for hadrons)
- IV. <u>Hadronic phase</u>: hadron-string interactions off-shell HSD

QGP phase: $\varepsilon > \varepsilon_{critical}$

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

PHSD – ,femto' accelerator

PHSD code: structure

Input file (<i>input</i>) for Au+Au @ 200 GeV - 30-40%		
197,	MASSTA:	target mass
79,	MSTAPR:	protons in target
197,	MASSPR:	projectile mass
79,	MSPRPR:	protons in projectile
21300.,	ELAB:	lab energy per nucleon
8.7,	BMIN:	minimal impact parameter [fm]
8.7,	BMAX:	maximal impact parameter [fm]
1.,	DBIMP:	impact parameter step [fm]
25,	NUM:	number of parallel events
1,	ISUBS:	number of subsequent runs
4567,	ISEED:	initial random seed [integer]
0,	ICHARM:	charm degrees of freedom $=0$ no, $=1$ yes
0,	IDILEPT:	=0 no dileptons, $=1$ electron pair, $=2$ muon pair
0,	ICQ:	=0 free, $=1$ drop. mass, $=2$ broad., $=3$ drop.+broad.
1,	IGLUE:	=1 with partons, $=0$ w/o partons HSD mode
40.,	FINALT:	final time of calculation [fm/c]
0,	IHARD:	=1 compute hard collisions, $=0$ no
10,	ILOW:	output level

PHSD is the parallel ensembles code!!!

loop over NUM – parallel ensembles or ,events':
 needed for the smooth description of the mean-field properties as energy density or baryon density

➔ possible parallelization

PHSD running time $\leftarrow \rightarrow$ HPC

PHSD mode: Au+Au/Pb+Pb, central, t_{final} = 40 fm/c

NUM – the number of parallel ensembles/events

→ CPU time per event grows with energy
 → PHSD mode (for RHIC, LHC) – more time consuming than HSD

PHSD is the open source code for the FAIR experiments: http://fias.uni-frankfurt.de/~brat/PHSD/index4.html

PHSD for HIC (highlights)

The most CPU costly observables (some examples)

(Multi-)strange particles in Au+Au

Multi-strange baryon production

Multi-strange hyperons (Ξ, Ω) are promising probes to study:

- in-medium effects at low bombarding energy
- QGP properties at high energy density
- Elementary production:

$$p + p \rightarrow \mathcal{L}^{-}K^{+}K^{+}p \qquad (E_{\text{beam}} > 3.7 \text{ GeV})$$
$$p + p \rightarrow \mathcal{Q}^{-}K^{+}K^{+}K^{\theta}p \qquad (E_{\text{beam}} > 7.0 \text{ GeV})$$

□ In heavy-ion reactions: sub-threshold channels, e.g. $p + p \rightarrow K^+ A p$ →

$$A + A \to \Xi^- p \quad \longrightarrow \quad A + \Xi^- \to \Omega^- + n$$

Production through these channels highly depends on baryon density (and it's fluctuations)

Centrality dependence of (multi-)strange (anti-)baryons

enhanced production of (multi-) strange antibaryons in PHSD

Cassing & Bratkovskaya, NPA 831 (2009) 215

Exitation function of (multi-)strange (anti-)baryons

Collective flow: anisotropy coefficients (v₁, v₂, v₃, v₄) in A+A

Anisotropy coefficients

Non central Au+Au collisions :

□ interaction between constituents leads to a pressure gradient => spatial asymmetry is converted to an asymmetry in momentum space => collective flow

Directed flow signals of the Quark–Gluon Plasma

H. Stöcker, Nucl. Phys. A 750, 121 (2005)

- Early hydro calculation predicted the "softest point" at E_{lab}= 8 AGeV
- A linear extrapolation of the data (arrow) suggests a collapse of flow at E_{lab} = 30 AGeV

PHSD: snapshot of the reaction plane

Color scale: baryon number density Black levels: QGP- parton density 0.6 and 0.01 fm⁻³ Red arrows: local velocity of baryon matter

 Directed flow v₁ is formed at an early stage of the nuclear interaction

 Baryons are reaching positive and mesons – negative value of v₁

V. Konchakovski, W. Cassing, Yu. Ivanov, V. Toneev, PRC(2014), arXiv:1404.2765

PHST

Excitation function of v₁ slopes

•The slope of $v_1(y)$ at midrapidity:

$$F = \frac{d v_I}{dy} |_{y=0}$$

Models:

HSD, PHSD

3D-Fluid Dynamic approach (3FD)

- UrQMD
- Hybrid-UrQMD

IFD-hydro with chiral cross-over and Bag Model (BM) EoS

STAR Collaboration, arXiv:1401.3043

PHSD/HSD and 3D-fluid hydro: V. Konchakovski, W. Cassing, Yu. Ivanov, V. Toneev, PRC(2014), arXiv:1404.2765 Hybrid/UrQMD/Hydro: J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, PRC 89 (2014) 054913

Elliptic flow v₂ vs. collision energy for Au+Au

• v_2 in PHSD is larger than in HSD due to the repulsive scalar mean-field potential $U_s(\rho)$ for partons

*v*₂ grows with bombarding energy due to the increase of the parton fraction

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

Flow coefficients versus centrality at RHIC

Fluctuations and correlations

Lattice QCD: Critical Point

Fluctuations of the quark number density (susceptibility) at $\mu_q > 0$

$$\frac{\chi_q}{T^2} = \left[\frac{\partial^2}{\partial (\mu_q / T)^2} \frac{P}{T^4}\right]_{T_{fixed}}$$

Lattice QCD predictions: χ_q (quark number density fluctuations) will diverge at the critical chiral point =>

Experimental observation – look for **non-monotonic behavior** of the observables near the critical point :

- baryon number fluctuations
- charge number fluctuations
- multiplicity fluctuations
- **a** particle ratio fluctuations $(K/\pi, K/p, ...)$
- mean p_T fluctuations
- 2 particle correlations

Multiplicity fluctuations in p+p

Scaled variance - multiplicity fluctuations in some acceptance (charge, strangeness, etc.):

Multiplicity fluctuations in HSD: 1%MC

Konchakovski, Lungwitz, Gorenstein, Bratkovskaya, Phys. Rev. C78 (2008) 024906

Multiplicity fluctuations for 1%MC practically do not depend on atomic mass for y>0 and only slightly grow with increasing collision energy.

HSD (and UrQMD) show a plateau on top of which the SHINE Collaboration expects to find increasing multiplicity fluctuations as a "signal" for the critical point !

Charge fluctuations

□ sensitive to the EoS at the early stage of the collision and to its changes in the deconfinement phase transition region

The decay of resonances strongly modifies the initial QGP fluctuations!

K/ π -ratio fluctuations: Transport models vs Data

HSD: Phys. Rev. C 79 (2009) 024907 UrQMD: J. Phys. G 30 (2004) S1381, PoS CFRNC2006,017 NA49: 0808.1237 STAR: 0901.1795

$$\sigma^2 \equiv rac{\langle \Delta (N_A/N_B)^2
angle}{\langle N_A/N_B
angle^2}$$

•In GCE for ideal Boltzman gas: $\sigma^{2} = \frac{1}{\langle N_{A} \rangle} + \frac{1}{\langle N_{B} \rangle}$

• Exp. data show a plateau from top SPS up to RHIC energies and an increase towards lower SPS energies

➔ evidence for a critical point at low SPS energies ?

- **but** the HSD (without QGP!) results shows the same behavior →
- K/ π -ratio fluctuation is driven by hadronic sources \rightarrow No evidence for a critical point in the K/ π ratio ?
- K/ π ratio fluctuation is sensitive to the acceptance!

Outlook - Perspectives

- * How to describe a first-order phas transition in transport models?
- How to describe parton-hadron interactions in a ,mixed' phase?

PHSD group

FIAS & Frankfurt University Elena Bratkovskaya Rudy Marty Hamza Berrehrah Daniel Cabrera Taesoo Song Andrej Ilner Giessen University Wolfgang Cassing Olena Linnyk Volodya Konchakovski Thorsten Steinert Alessia Palmese Eduard Seifert

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

External Collaborations

- SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Vitalii Ozvenchuk
 - Texas A&M University: Che-Ming Ko
 - JINR, Dubna: Viacheslav Toneev Vadim Voronyuk
 - BITP, Kiev University: Mark Gorenstein

Barcelona University: Laura Tolos Angel Ramos

UAB Universitat Autònoma de Barcelona