Di-Jet Asymmetry and Wave Turbulence

Edmond Iancu IPhT Saclay & CNRS

based on collabs. with Jean-Paul Blaizot, Fabio Dominguez, Leonard Fister, and Yacine Mehtar-Tani (since 2012)

Ab initio, Heidelberg, 2014

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- Detailed studies show that the 'missing energy' is carried by many soft ($p_\perp < 2~{\rm GeV})$ hadrons propagating at large angles

Di-jet asymmetry (CMS)

- A rather unexpected picture from the viewpoint of (in-vacuum) QCD
 collinear emissions, well collimated jets, little energy in soft hadrons
- Can we understand this *ab initio* (within QCD at weak coupling) ?
 main difficulty: efficiently transport energy down to soft quanta

pQCD : the BDMPSZ mechanism

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96–97) Wiedemann (2000); Arnold, Moore, and Yaffe (2002–03); ...

• Additional gluon radiation triggered by interactions in the medium

- Originally developed for a single gluon emission (energy loss by the LP)
- The LHC data call for a global understanding of the jet evolution
- Recent extension of the theory to multiple medium-induced emissions Blaizot, Dominguez, E.I., Mehtar-Tani (2012–13)

Transverse momentum broadening

- Gluon emission is linked to transverse momentum broadening
 - transverse kicks provide acceleration and thus allow for radiation
 - $\bullet\,$ they increase the emission angle θ
 - they occur randomly \Longrightarrow Brownian motion in k_{\perp}

• Gluon emissions require a formation time $au_f \simeq \omega/k_\perp^2$

• During formation, the gluon acquires a momentum $k_{\perp}^2 \sim \hat{q} au_f$

Formation time & emission angle

$$au_f \simeq rac{\omega}{k_\perp^2} \quad \& \quad k_\perp^2 \simeq \hat{q} au_f \quad \Longrightarrow \quad au_f \simeq \sqrt{rac{\omega}{\hat{q}}}$$

• Maximal ω for this mechanism: $\tau_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$

 \vartriangleright soft gluons ($\omega \ll \omega_c)$ have small formation times: $\tau_f \, \ll \, L$

 \rhd ... and large emission angles $\theta\simeq k_{\perp}/\omega$: $\theta\gg \theta_c$

$$\rhd$$
 final momentum $k_{\perp}^2 \sim \hat{q} L$

$$heta(\omega) \simeq rac{\sqrt{\hat{q}L}}{\omega} > heta_f(\omega)$$

 $\mathsf{maximal} \ \mathsf{energy} \Leftrightarrow \mathsf{minimal} \ \mathsf{angle}$

 $\theta_c \equiv \theta(\omega_c) \lesssim 0.1$

Emission probability

• Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha \frac{L}{\tau_f(\omega)} \simeq \alpha \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

• LPM effect : the emission rate decreases with increasing ω

- coherence: many collisions contribute to a single, hard, emission
- formation time $\tau_f(\omega) \gg$ mean free path λ
- Hard emissions : $\omega \sim \omega_c$
 - rare event : probability of $\mathcal{O}(\alpha)$
 - dominate the average energy loss by the leading particle

$$\Delta E = \int^{\omega_c} \mathrm{d}\omega \,\,\omega \,\frac{\mathrm{d}N}{\mathrm{d}\omega} \,\,\sim \,\,\alpha\omega_c$$

 $\bullet\,$ small emission angle $\theta_c\sim 0.1$ \Rightarrow the energy remains inside the jet

Soft emissions at large angles

 \bullet Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha \frac{L}{\tau_f(\omega)} \simeq \alpha \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- Relatively soft emissions with $\omega \ll \omega_c$:
 - large emission probability : event-by-event physics

$$\omega \, \frac{\mathrm{d}N}{\mathrm{d}\omega} \, \sim \, 1 \qquad \text{when} \qquad \omega \, \sim \, \omega_s \equiv \alpha^2 \omega_c$$

- a relatively smaller contribution to the energy loss : $\Delta E_s \sim \alpha^2 \omega_c$
- ... but this can be lost at very large angles : $heta\gtrsim heta_s\equiv heta_c/lpha^2$
- This energy is lost by the jet \implies di-jet asymmetry
- When probability of $\mathcal{O}(1) \Longrightarrow$ multiple branchings become important

Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha^2 \omega_c$ by the leading particle

Each primary gluon develops its own gluon cascade

• Branching probability of $\mathcal{O}(1)$: multiple branchings event-by-event

Quasi-democratic branchings

- The soft branchings are quasi-democratic
 - the daughter gluons carry comparable energy fractions: $x\sim 1/2$
- Non-trivial ! Not true for bremsstrahlung in the vacuum !

• probability of $\mathcal{O}(1)$ when $\alpha \ln(1/x) \sim 1 \Longrightarrow$ favors $x \ll 1$

Quasi-democratic branchings

- The soft branchings are quasi-democratic
 - $\bullet\,$ the daughter gluons carry comparable energy fractions: $x\sim 1/2$
- Non-trivial ! Not true for bremsstrahlung in the vacuum !

- probability of $\mathcal{O}(1)$ when $\alpha \ln(1/x) \sim 1 \Longrightarrow$ favors $x \ll 1$

• In-medium radiation: rate also depends upon the parent energy ω_0

• probability of $\mathcal{O}(1)$ when $\omega_0 \sim \alpha^2 \omega_c$ for any value of x

Quasi-democratic branchings

- The soft branchings are quasi-democratic
 - $\bullet\,$ the daughter gluons carry comparable energy fractions: $x\sim 1/2$
- Non-trivial ! Not true for bremsstrahlung in the vacuum !

- Democratic branchings are unusual in gauge theories at weak coupling
- ... but become natural at strong coupling (Y. Hatta, E.I., Al Mueller '08)
- N.B. weak coupling but high density can fake strong coupling

Ab initio, Heidelberg, 2014

The democratic cascade

- Democratic branchings imply an energy flux independent of ω (or x)
 - $\bullet\,$ the energy flows from large x to small x without accumulating at any intermediate value of x

- maximally efficient energy transport to small x (all the energy can flow !)
- since very soft, such gluons propagate at very large angles w.r.t. jet axis
- $\bullet\,$ the cascade stops when $\omega \sim T$
- gluons with $\omega \sim T$ thermalize (cf. talk by Bin Wu)
- Jet energy loss via many soft gluons propagating at large angles
 ⇒ a natural explanation for di-jet asymmetry ☺

Compare to DGLAP cascade (jet in the vacuum)

- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- That is, the energy remains at small angles
- Di-jet asymmetry strongly supports a democratic cascade

Wave turbulence

• Democratic branchings imply an energy flux independent of ω

● Uniform flux ↔ turbulent cascade (Kolmogorov, '41; Zakharov, '92)

- the prototype: Richardson cascade for breaking-up vortices
- characteristic power-law spectrum: $D(\omega) \propto 1/\omega^{
 u}$ (here, u = 1/2)
- non-thermal fixed point: 'gain' = 'loss'

A typical gluon cascade

- The leading particle emits mostly soft gluons: $\omega \lesssim \omega_s \equiv lpha^2 \omega_c$
- These primary gluons rapidly split into even softer ones
- The primary gluons propagate along typical angles $\theta_s\simeq \theta_c/\alpha^2\sim 0.5$

• The final gluons ($\omega \sim T$) make even larger angles $\theta_{\rm th} > \theta_s \gtrsim 1$

The rate equation

- Multiple branching pprox a classical branching process (Markovian)
 - $\bullet\,$ independent splittings with the rate given by <code>BDMPSZ</code>

- interference effects are suppressed by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Evolution equation for the gluon spectrum ('rate equation')

$$D(x,t) \equiv x rac{\mathrm{d}N}{\mathrm{d}x}$$
 where $x = rac{\omega}{E}$ and $t \leq L$

• Previously conjectured and used for phenomenological studies Baier, Mueller, Schiff, Son '01 ('bottom-up thermalization'); Arnold, Moore, Yaffe, '03; Jeon, Moore '05; MARTINI (McGill)

Ab initio, Heidelberg, 2014

The rate equation

- Multiple branching pprox a classical branching process (Markovian)
 - independent splittings with the rate given by BDMPSZ

- interference effects are suppressed by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Evolution equation for the gluon spectrum ('rate equation')

$$D(x,t) \equiv x rac{\mathrm{d}N}{\mathrm{d}x}$$
 where $x = rac{\omega}{E}$ and $t \leq L$

• Turbulence aspects only recently recognized (exact solutions) J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

The gluon spectrum from multiple branchings

• The benchmark: the BDMPSZ spectrum for a single emission

- Solution to the rate eq. with initial condition: $D(x, \tau = 0) = \delta(x 1)$
- At small times: just one branching \Longrightarrow BDMPSZ, as expected

Ab initio, Heidelberg, 2014

Multiple branchings

• Arbitrarily many emissions \implies energy transfer towards small x

• one may expect the spectrum to rise faster at $x \ll 1$, like in DGLAP:

$$D(x, au) \propto rac{1}{x^{\lambda(au)}}$$
 with $\lambda(au) > 1/2$

• "the energy moves from the leading particle into the bins at small x"

Multiple branchings

• Arbitrarily many emissions \implies energy transfer towards small x

• one may expect the spectrum to rise faster at $x \ll 1$, like in DGLAP:

$$D(x, au) \propto rac{1}{x^{\lambda(au)}}$$
 with $\lambda(au) > 1/2$

- "the energy moves from the leading particle into the bins at small x"
- But this is not what really happens !

• The shape of the spectrum is preserved by multiple branchings

$$D(x, au) \simeq rac{ au}{\sqrt{x}} e^{-\pi au^2}$$

• KZ fixed point \Longrightarrow energy flux uniform in $\omega \Longrightarrow turbulence$

• $\tau < 1$: broadening of the LP peak & growth at small x

Ab initio, Heidelberg, 2014

• The shape of the spectrum is preserved by multiple branchings

$$D(x, au) \simeq rac{ au}{\sqrt{x}} e^{-\pi au^2}$$

• KZ fixed point \Longrightarrow energy flux uniform in $\omega \Longrightarrow turbulence$

• $\tau < 1$: broadening of the LP peak & growth at small x

Ab initio, Heidelberg, 2014

• The shape of the spectrum is preserved by multiple branchings

$$D(x, au) \simeq rac{ au}{\sqrt{x}} e^{-\pi au^2}$$

• KZ fixed point \implies energy flux uniform in $\omega \implies$ turbulence

• For $\tau \gtrsim 1$, the spectrum is suppressed at any x

Ab initio, Heidelberg, 2014

• The shape of the spectrum is preserved by multiple branchings

$$D(x, au) \simeq rac{ au}{\sqrt{x}} e^{-\pi au^2}$$

• KZ fixed point \Longrightarrow energy flux uniform in $\omega \Longrightarrow turbulence$

• The LP has disappeared \Longrightarrow no source to feed the spectrum

Ab initio, Heidelberg, 2014

• The shape of the spectrum is preserved by multiple branchings

$$D(x, au) \simeq rac{ au}{\sqrt{x}} e^{-\pi au^2}$$

• KZ fixed point \implies energy flux uniform in $\omega \implies$ turbulence

• The energy flows out of the spectrum

Ab initio, Heidelberg, 2014

The turbulent flow

• The energy remaining in the spectrum dies exponentially fast :

- Formally, it accumulates into a condensate at x = 0
- Physically, it goes below $x_{th} = T/E \ll 1$, where it thermalizes \triangleright the 'turbulent' picture ceases to be valid around T (cf. talk by Bin Wu)

Ab initio, Heidelberg, 2014

$$\Delta E \equiv E \mathcal{E}_{\text{flow}} = E \left(1 - e^{-\pi \tau^2} \right)$$

- If $au\gtrsim 1$, all of the jet energy can be lost in this way !
- For the relevant kinematics at LHC (di-jet asymmetry) : $au \ll 1$

$$au \, \equiv \, rac{L}{t_{
m br}(E)} \,, \qquad t_{
m br}(E) \, \sim \, rac{1}{lpha} \, \sqrt{rac{E}{\hat{q}}}$$

• $\hat{q} \sim 1 \,\mathrm{GeV^2/fm}\,, \ L \sim 5 \,\mathrm{fm}\,, \ E \gtrsim 100 \,\mathrm{GeV} \Longrightarrow \ \tau \simeq 0.3$

$$\mathcal{E}_{\text{flow}} \simeq \pi \tau^2 \implies \Delta E \simeq \alpha^2 \hat{q} L^2 \simeq 10 \div 20 \,\text{GeV}$$

- $\bullet\,$ independent of the energy E of the leading particle
- this is the typical energy loss at large angles (event-by-event)

Angular dependence of the energy loss

(L. Fister, E. I., arXiv:1409.2010)

• $\mathcal{E}(\theta < \theta_0)$: the energy contained within a jet with opening angle θ_0

- offset at $heta_0 \sim \pi/2$: the energy $\mathcal{E}_{\mathrm{flow}}$ taken away by the flow
- almost flat in θ_0 : energy is lost directly at large angles

Angular distribution at the LHC (CMS)

• For each bin in θ : energy difference between trigger jet and away jet

- the offset in Pb+Pb is clearly visible (larger than for p+p)
- the ΔR dependence looks stepper ... but is exactly the same in p+p

Soft hadrons at large angles

• The energy (im)balance for a jet with a wide opening : R = 0.8

- Di–jet asymmetry : $E_{
 m in}^{
 m T}$ > $E_{
 m in}^{
 m A}$
- No missing energy : $E_{\rm in}^{\rm T}+E_{\rm out}^{\rm T}$ = $E_{\rm in}^{\rm A}+E_{\rm out}^{\rm A}$
- \bullet The energy lost at large angles, $E_{\rm out}^{\rm A}-E_{\rm out}^{\rm T}$...
 - ... is carried mostly by soft hadrons with $p_T < 2 \text{ GeV}$