High p_T Particle Production and Jet Modification in Nuclear Collisions

Ab-initio approaches in many-body QCD confront heavy-ion experiments

Heidelberg December 2014

Christian Klein-Bösing / IKP Münster and EMMI/GSI

Picturing Jets/Jet Quenching

depth of field: jet finding with different R

depth of field

bertocal distance opposite a are using. If you the the depth of field will ce to infinity.⊲ For amera has a hyperfe

Resolution: jet fragmentation \rightarrow single particle (+ PID)

Heidelberg 12.2014

A Close to Perfect Picture

Nuclear modification factor:

$$\mathbf{R}_{\mathbf{A}\mathbf{A}}(\mathbf{p}_{\mathrm{T}}) {=} \frac{\mathbf{d}^{2}\mathbf{N}_{\mathbf{A}\mathbf{A}}/\mathbf{d}\mathbf{y}\mathbf{d}\mathbf{p}_{\mathrm{T}}}{\mathbf{T}_{\mathbf{A}\mathbf{A}}\mathbf{d}^{2}\boldsymbol{\sigma}_{\mathbf{p}\mathbf{p}}\mathbf{d}\mathbf{y}\mathbf{d}\mathbf{p}_{\mathrm{T}}}$$

$$\mathbf{T}_{\mathsf{A}\mathsf{A}} = \mathbf{N}_{\mathsf{coll}} / \sigma_{\mathsf{N}\mathsf{N}}$$

... the most popular observable for hard probes since 2001

 π^0 as proxy for hard scattered partons strongly suppressed Color neutral probes unaffected \rightarrow Strong final state effect.

Ab-Initio R_{AA}?

Only above $Q^2 \approx (2 \text{ GeV})^2$ pQCD and factorization is applicable Transmission: Hard scattering without final state interaction (e.g. from surface) also over final state particles pQCD cross section $\approx p_{T}^{-n}$, nuclear PDF (jet with certain R) $\cdot \frac{\int \sum_{a,b,c} n\mathsf{PDF}_{a}(x) \otimes n\mathsf{PDF}_{b}(x) \otimes \frac{\mathrm{d}\sigma_{ab \to c+X}^{\mathsf{hard}}}{\mathrm{d}^{3}p} \otimes \mathsf{FF}_{c/h}(z)}{\int \sum_{a,b,c} \mathsf{PDF}_{a}(x) \otimes \mathsf{PDF}_{b}(x) \otimes \frac{\mathrm{d}\sigma_{ab \to c+X}^{\mathsf{hard}}}{\mathrm{d}^{3}p} \otimes \mathsf{FF}_{c/h}(z)}$ $+(1-T)\cdot\frac{\int \sum_{a,b,c} \mathsf{nPDF}_a(x) \otimes \mathsf{nPDF}_b(x) \otimes \frac{\mathsf{d}\sigma_{ab \to c+X}^{\mathsf{hard}}}{\mathsf{d}^3 p} \otimes \mathsf{FF}_{c/h}^{\mathsf{medium}}(z)}{\int \sum_{a,b,c} \mathsf{PDF}_a(x) \otimes \mathsf{PDF}_b(x) \otimes \frac{\mathsf{d}\sigma_{ab \to c+X}^{\mathsf{hard}}}{\mathsf{d}^3 p} \otimes \mathsf{FF}_{c/h}(z)}$ simple: Leading parton $FF^{med} = P(\Delta E) FF(z - \Delta E/E)$

realistic: geometry, time evolution, position, energy conservation medium pick-up?

- 1) Transmission (P(Δ E) = 0) yields a constant offset to R_{AA} (modulo nPDF)
- 2) Parton energy loss (P(Δ E) > 0) filtered by steeply falling partonic cross section
- 3) R_{AA} averages over medium evolution and path-length

High p_T spectra from RHIC to LHC

• Power law at high $p_{\rm T}$ characteristic for QCD hard scattering

 $Erac{d^3\sigma}{d
ho^3} \propto rac{1}{
ho_T^n}$

- To first order *n* reflects slope of parton spectra
- Spectra harden significantly with \sqrt{s}
- Leading particle bias reduced at LHC, sub-leading fragments contribute more
- Reduced sensitivity to leading parton energy loss

Confronted with pQCD

Heidelberg 12.2014

Energy Loss: Over-Simplified

(*) PHENIX PRC 76 034904

Very little discrimination power with central R_{AA} at RHIC. Same simple picture at LHC \rightarrow Separation but higher R_{AA} (due to harder parton spectrum)

Nuclear Modification from 17.3 to 2760 GeV

Neutral pion production shows increasing suppression, despite flatter spectrum.

LHC:	$S_6(0.10) = 0.43$
RHIC:	S ₈ (0.18) = 0.25

Increasing suppression with \sqrt{s} , but pure surface emission (flat R_{AA}) not ruled out here.

Temperature and geometry dependence (centrality/event plane) provide more constraints

The Kinematic Lever Arm Charged Hadron R_{AA}

- Suppression of single hadrons, rise and flattening of R_{AA} generic in all energy loss models
- AdS/CFT and pure radiative energy loss over-quench (mixture of mechanisms needed)
- Calculations/simulations beyond leading particle (right) slightly preferred

Include more particles in the observable: Jets More direct access to the medium modification of colored probes.

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

Heavy Flavor Spectral Shapes

) b (→ c) → e

FONLL $c \rightarrow e$

 $b (\rightarrow c) \rightarrow e$

5

6

7

8

FONLL b (\rightarrow c) \rightarrow e

 $c \rightarrow e$

WESTFÄLISCHE

WILHELMS-UNIVERSITÄT

Heidelberg 12.2014

HFE Electron R_{AA}

Slightly larger than single hadrons, in between charm and beauty expectation. What is the effect of spectral shape? Closer to parton pT with Ds...

Heidelberg 12.2014

Prompt D vs. Non-Prompt J/ ψ

Models reproduce suppression and centrality dependence with different energy loss for charm and beauty. Magnitude of the effect (modulo spectral shape) shows large deviations.

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

Jet Production in pp @ 2.76 TeV

Charged Jets

Full Jets

NLO pQCD with hadronization reproduces full jet data well, some variance in overall normalization of different MC/tunes.

Comparing Single Particles and Jets

Different parton p_T at same reconstructed p_T . Effective conversion possible, depends on fragmentation pattern + slope

WESTFÄLISCHE

WILHELMS-UNIVERSITÄT

Heidelberg 12.2014

Charged Jets and Hadrons

Similar limiting value *R*_{pA}≈ 1 for hadrons and jets.

Heidelberg 12.2014

Similar limiting value $R_{AA} \approx 0.45$ for hadrons and jets. Same underlying parton p_T seen with different depth of focus \rightarrow fragmentation not strongly modified compared to pp

Hadrons, Jets and b-Jets


```
Soft:
Semi-Hard:
Hard:
```

Hardest:

Dominated by non-perturbative production, flow, coalescence

Minimum R_{AA} (set by surface emission?) and slow increase

 $p_T > 8$ GeV, rising R_{AA} , no obvious difference between species, only from b increased sensitivity to (mixed) mechanisms

 $p_T > 35 (100)$ GeV for hadrons (jets), identical flat R_{AA} , pure power law parton spectrum mass differences no longer important? Complete Absorption of jets? dominance of radiative energy loss?, ideal ground for isolating effect on fragmentation, L dependence: $R_{AA} \rightarrow e^{-L/\lambda}$

Can we extract this for the QGP?

A constant cross section at high p_T and power law spectrum would lead to constant R_{AA} Is this a coincidence (ignoring path length fluctuations, evolution)? Or first step ...

A new approach: Recoil Jets

Hadron triggered semi-inclusive jet distribution

 Δ_{recoil} = RecoilYield[20-50] - RecoilYield[10-15]

- Data driven background removal
 - arxiv:1208.1518
- No fake jets in Δ_{recoil}
- Same unfolding techniques as for \bullet inclusive spectrum
- Validation in pp ۲
 - Comparison to PYTHIA and pQCD
- (Deliberate) biases
 - Minimum Q² \rightarrow harder spectrum
 - Surface bias

Goal: Access parton fragmentation at lower jet p_{τ} and larger R.

CKB

combinatorial

"Structure Ratio"

No significant modification of jet structure for up to R \approx 0.5. \rightarrow Naturally extension with PID/Q/ γ tagging in the next run.

- Increasingly differential picture of parton energy loss
 - Collisional and radiative energy loss, energy re-distributed to large angles
 - R_{AA} observable alone cannot reflect this complexitiy but still highly popular
 Wish for simple, clear pictures
- Availability of parton energy loss has become MCs essential
 - Development of new observables
 - Comparison to all existing observables, with evaluation of (event-by-event) biases and separation of effects averaged/washed out in R_{AA}
- Two qualitatively different regimes at LHC
 - Parton p_T larger \approx 100 GeV: isolation of radiative energy loss
 - Below: mixture of processes and separation of flavor/mass dependence
 - + Energy (T) dependence with RHIC

Reconstructed Jets in ALICE

Electro Magnetic Calorimeter (EMCal)

Pb-Scintillator sampling:

- |η| < 0.7, 1.4 < φ < π
- Track matching to account for double counted energy

Neutral constituents

Full jet Charged constituents (Charged jet) Heidelberg 12.2014

Central barrel tracking

Combined TPC+ITS: • $|\eta| < 0.9, 0 \le \phi \le 2\pi$

Converted

photon

V0 topology

Westfälische Wilhelms-Universität Münster

Resolving Hadron Species

Heidelberg 12.2014

Prompt D mesons compatible with charged hadrons and below non-prompt J/ψ .

Heidelberg 12.2014

Charged Hadron R_{pA}

No strong nuclear modification at high p_T . Hint for peak below 10 GeV. Confirmed with PID: Mass ordering, baryons enhanced

Heidelberg 12.2014

Resolving Hadron Species

See talk by Alexander Kalweit

Seperation of Baryons and Mesons. "Classical"-Explanation cannot account for this. Flow and recombination in pPb?

Jet Modification

Interactions of the hard parton with the medium modify the jet relative to pp, but a jet is not uniquely defined (algorithm, radius, p_T cuts, ...)

Experimental challenge in A+A: Separate jet signal/constituents from large soft background

Reconstructed Jets in ALICE

- Input to jet reconstruction
 - Charged tracks (ITS+TPC): $p_T > 150 \text{ MeV/c}$
 - Neutral energy clusters (EMCal): $E_T > 300 \text{ MeV}$
 - Correction for matched tracks avoids energy double counting
 - High precision at single particle level down to very low $p_{\rm T}$
- Jet reconstruction via FastJet*
 - Anti- $k_{\rm T}$ for signal
 - $-k_{\rm T}$ for background density
 - Boost invariant p_{T} recombination scheme
- Correction for detector effects via unfolding
 - Momentum resolution
 - Energy resolution
 - Track matching

N.B.: Different parton p_T scale at same jet p_T for charged and neutral jets.

*Cacciari et al. EPJ C72:1896 (2012)

Charged jets

Full jets

Theory Comparison R_{AA} and I_{AA}

Heidelberg 12.2014

The Kinematic Lever Arm

- Models tuned to RHIC data
 - Identical expansion model Renk PRC85 044903 (2012)
 - LHC-extrapolation: Test of T-dependence
- Flattening of R_{AA}
 - Generic property of all models
- LHC data favor
 - Δ E ~ T³Lⁿ (n ≤ 2)

Further constraint of energy loss scenarios.

Heidelberg 12.2014

Heidelberg 12.2014

Jet Structure Cross Section Ratio

R = 0.4

R = 0.2

Ratio consistent with vacuum jets for peripheral and central collisions. No significant jet broadening. Consistent with expectation from JEWEL* energy loss MC.

(Charged) Jet Production pp @ 7 TeV

Larger variance of MC/tunes at higher \sqrt{s} (important for increased LHC energy)

A Closer Look Jet Structure in pp II

Radial structure well reproduced by MC.

Hump-backed plateau, well reproduced by MC.

A Closer Look III Identified Fragmentation

More discriminating between different MC tunes.

Heidelberg 12.2014

Event Background

$$\mathbf{p}_{\mathsf{T,jet}} = \mathbf{p}_{\mathsf{T,jet}}^{\mathsf{rec}} - \rho \times \mathbf{A}_{\mathsf{jet}}$$

- ρ: Median of p_T/area, determined event by event via k_T clustering
 - Here k_T clusters |η| < 0.5, excluding two leading clusters
 - Advantage: robust statistical measure
- Natural connection of ρ to event properties/characteristics of p_{T} spectrum
 - $\rho \approx N < p_{\rm T} >$
- Typical value for R = 0.4, $A \approx 0.5$
 - 50 100 GeV/c background for 0-10%

Background increases linearly with input raw multiplicity. Depends on $p_{\rm T}$ cuts and R.

Background Fluctuations

- Region-to-region deviations from median
 - Statistical fluctuations (~√N)
 - Collective effects (~ v₂ N)
 - Mini-jets
 - Non-uniform detection
- Data driven determination
 - Random cone, probe embedding in Pb-Pb events

 $\delta \mathbf{p}_{\mathsf{T}} = \mathbf{p}_{\mathsf{T},\mathsf{rec}} - \mathbf{A} \cdot \boldsymbol{\rho} - \mathbf{p}_{\mathsf{T},\mathsf{probe}}$

- Width of distribution dependent on R and p_T cuts
 - These change multiplicity within cone

ALICE tracking capabilities essential to characterize background properties.

Combinatorial Jets

- Reconstructed jet clusters which do not originate from hard process
 - Determined by fluctuations of particle number and $p_{\rm T}$
 - Bump around zero after background subtraction similar to δp_T
- No clear separation possible
 - Impact reduced for smaller jets
- Leading track bias to tag a hard process
 - $p_T > 5$, 8, 10 GeV/c **after** jet reconstruction
 - No reconstruction bias, only fragmentation
- Hard jets dominate beyond $p_{\rm T} \approx 60 \text{ GeV/c}$

Jet p_T resolution

- Background fluctuations and detector effects partially compensate
 - Low jet p_{T} : background fluctuations dominate
 - High jet p_{T} : detector effects dominate

Resolution main effect on jet spectra: Corrected via unfolding (χ^2 , SVD, Bayesian)

Heidelberg 12.2014

Jet Production in Pb-Pb

Charged jets, R = 0.3 4 centralities, no leading track bias

Full jets, R = 0.2 central events

$$\textbf{R}_{\textbf{CP}} = \frac{\textbf{N}_{\textbf{coll}}^{\textbf{peri}} \cdot \textbf{d}^2 \textbf{N} / \textbf{dydp}_{\textbf{T}} \big|_{\textbf{cent}}}{\textbf{N}_{\textbf{coll}}^{\textbf{cent}} \cdot \textbf{d}^2 \textbf{N} / \textbf{dydp}_{\textbf{T}} \big|_{\textbf{peri}}}$$

Jets clearly suppressed in central collisions. Centrality ordered suppression pattern.

No strong p_{T} dependence

Jet Structure Cross Section Ratio

Jet Structure Cross Section Ratio

Consistent with PYTHIA, pQCD+hadronization. Larger collimation at high jet p_T . Spectra approach similar slope.

R_{CP} LHC-Comparison

N.B.: Different

ullet

- Jet constituent objects
- Momentum cut-offs
- Treatment/suppression of UE background fluctuations

Similar message from all LHC experiments: Jets are strongly suppressed over a broad p_{T} range.

Low p_T region (rise?), most difficult/interesting. Other methods to explore reconstructed jets?

Other Knobs ...

Cross Section Ratio Charged vs. full Jets

PID in Jets

Near-side peak (after bulk subtraction): p/π ratio compatible with that of pp (PYTHIA) Bulk region: p/π ratio strongly enhanced – compatible with overall baryon enhancement Jet particle ratios not modified in medium? Could this still be surface bias?

Color Neutral Probes

- Also hard production
 - t~1/Q « 1 fm/c
 - Not affected by medium
 - Effective quark-jet tag

- $p_T < 20 \text{ GeV}/c$: fragmentation photons start to dominate
- Other sources
 - Production from thermalized partons and hadrons
 - Jet-medium interaction

CMS PRL 106 212301 (2011)

Direct photons are produced and escape throughout the full evolution of the system!

Hard (Colored) Probes in Heavy-Ion Collisions

- Probe the created medium
 - Parton scattering prior to QGP formation (t ≈ 1/Q « 1 fm/c)
- History imprinted into jet structure
 - High p_T partons interact strongly with QCD medium prior to fragmentation ("jet tomography")
- Experimental access
 - Single particles at high p_{T}
 - Two-particle correlations
 - Reconstructed jets
 - Jet fragmentation pattern

Direct effect on high p_T /jet observables compared to p+p.

increasing influence of underlying event background on observable

