Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

CERN

Ab initio approaches in many-body QCD confront heavy-ion experiments, Heidelberg 15. – 17.12.2014

Jet quenching in perturbative QCD with JEWEL

Korinna ∠app

EWEL summary

dialogue

Construction principle

 in vacuum: description of jets in collinear factorisation pQCD extremely successful

fixed order matrix elements resummation of collinear logs (parton shower) matching & merging

► Can we use this language for medium-modified jets?

single hard re-scattering same as jet production in p+p except for pdf's

- ► hard re-scattering resolves medium's partonic structure
- describe interactions using standard pQCD techniques
- use this as starting point for construction of jet quenching model
- make sure to recover known analytical results in appropriate limits

Jet quenching in perturbative QCD with JEWEI

Korinna Zapp

JEWEL summary

Jets and hydro in dialogue

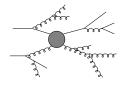
Conclusions

. .

Assumptions

- medium as seen by jet: collection of quasi-free partons
- use infra-red continued perturbation theory to describe all jet-medium interactions
- formation times govern the interplay of different sources of radiation
- ▶ use results from eikonal limit to include LMP-effect

KCZ, Krauss & Wiedemann, JHEP 1303 (2013) 080 KCZ, Eur.Phys.J. C74 (2014) 2762 KCZ, Phys.Lett. B735 (2014) 157 jewel.hepforge.org



Korinna Zapp

JEWEL summary

dialogue

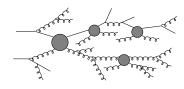

▶ jet production in initial N+N collisions: ME+PS

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

Jets and hydro i dialogue

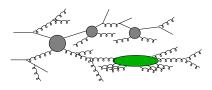

- ▶ jet production in initial N+N collisions: ME+PS
- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - ► general kinematics

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

dialogue


- ▶ jet production in initial N+N collisions: ME+PS
- ▶ re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics
- emission with shortest formation time is realised
 - ▶ all emission ("vacuum" & "medium induced") are equal
 - hard structures remain unperturbed

Jet quenching in perturbative QCD with JEWEI

Korinna Zapp

JEWEL summary

dialogue

- ▶ jet production in initial N+N collisions: ME+PS
- re-scattering: ME+PS
 - generates elastic & inelastic processes
 - with leading log correct relative rates
 - general kinematics
- emission with shortest formation time is realised
 - ▶ all emission ("vacuum" & "medium induced") are equal
 - hard structures remain unperturbed
- ► LPM interference KCZ, Stachel, Wiedemann, JHEP 1107 (2011) 118
 - also governed by formation times
 - without kinematic restrictions

Jet quenching in perturbative QCD with JEWEI

Korinna Zapp

JEWEL summary

dialogue

 $\tau = 0.6 \text{ fm}$

Conclusions

 $\tau = 4 \text{ fm}$

- ▶ jet production MEs & ISR: PYTHIA Sjostrand et al., JHEP 0605 26
- ▶ nuclear PDFs: EPS09 Eskola, Paukkunen & Salgado, JHEP 0904 (2009) 065
- ▶ jet evolution in medium: JEWEL
- medium: do whatever you like, e.g.
 - ► geometry: Glauber model Eskola et al., Nucl. Phys. B 323 37 distribution of jets and temperature profile
 - ▶ EOS: ideal quark-gluon gas $\Rightarrow n \propto T^3$ & $\epsilon \propto T^4$
 - ► boost-invariant longitudinal expansion Bjorken, PRD 27 (1983)
 - \Rightarrow $T(\tau) \propto \tau^{-1/3} \Rightarrow n(\tau) \propto \tau^{-1}$ & $\epsilon(\tau) \propto \tau^{-4/3}$
 - ▶ initial conditions: $T_i = 486 \,\text{MeV}$ at $\tau_i = 0.6 \,\text{fm}$

Shen and Heinz, Phys. Rev. C 85 (2012) 054902

hadronisation: PYTHIA string fragmentation

 $\tau = 2 \text{ fm}$

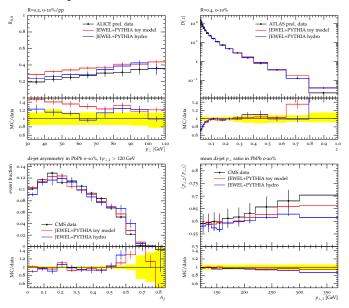
The background

Hydro: 1+1 viscous hydro

Floerchinger & Wiedemann, Phys. Lett. B 728 (2014) 407

- ightharpoonup azimuthally symmetric (b=0)
- ▶ boost-invariant long expansion + transv expansion
- viscosity: $\eta/s = 0.08$
- ► EOS: parametrisation of lattice + hadron resonance gas Huovinen & Petreczky, Nucl. Phys. A 837 (2010) 26
- ▶ initial conditions: $T_i = 485 \text{ MeV}$ and $\tau_i = 0.6 \text{ fm}$ transverse profile from Glauber model

Shen & Heinz, Phys. Rev. C 85 (2012) 054902


Jet quenching in perturbative QCD with JEWEI

Korinna Zapp

JEVVEL summary

Jets and hydro in dialogue

JEWEL+hydro: some results

CMS, Eur. Phys. J. C **72** (2012) 1945; ALICE, arXiv:1208.6169 ALTAS-CONF-2012-115; CMS, Phys. Lett. B **712** (2012) 176 Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

Jets and hydro in dialogue

Definitions

- ▶ interface: 4-momentum transfer in scattering processes
- source term: $J^{\mu}(x) = \sum_{i} \Delta p_{i}^{\mu} \delta^{(4)}(x x_{i})$
- hydro equations: $\partial_{\mu}T^{\mu\nu}=J^{\nu}$
- ▶ projections w.r.t. fluid velocity:
 - $J_S = u_\nu J^\nu \quad \& \quad J_V^\mu = \Delta^\mu_{\ \nu} J^\nu$
- ightharpoonup characterise J^{μ} in terms of
 - event averages: $\langle J_S(x) \rangle$, $\langle J_V^{\mu}(x) \rangle$
 - correlators: $\langle J_S(x)J_S(y)\rangle$, $\langle J_S(x)J_V^{\mu}(y)\rangle$, $\langle J_V^{\mu}(x)J_V^{\nu}(y)\rangle$

for Gaussian fluctuations this is sufficient

Setup for 'typical event'

- restrict first study to b=0, $|\eta|<0.5$
 - this is simply a matter of convenience
- ho $p_{\perp,cut}=3\,{
 m GeV}$ generate jets where they dominate over bulk
- $ightharpoonup \langle N_{\text{di-jet}} \rangle = T_{AA} \sigma_{\text{di-jet}} \approx 1700$

Jet quenching in perturbative QCD with JEWEL

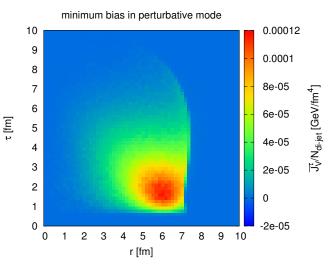
Korinna Zapp

JEWEL summary

Jets and hydro in dialogue

The source term of MinBias events: averages

follows temperature profile


Jet quenching in perturbative QCD with JEWEL

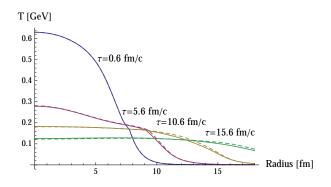
Korinna Zapp

Jets and hydro in

dialogue Conclusion

The source term of MinBias events: averages

non-trivial functional dependence


Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

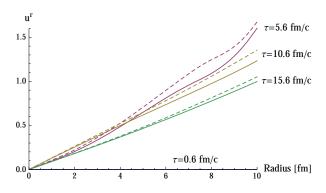
Jets and hydro in

dialogue Conclusion

Hydro with source term of MinBias events

effect of jets on temperature negligible

Jet quenching in perturbative QCD with JEWEL


Korinna ∠app

JEWEL summary

Jets and hydro in

dialogue

Hydro with source term of MinBias events

► small increase of transverse flow

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

Jets and hydro in dialogue

Conclusions: Jet Quenching in JEWEL

jet evolution interleaved with scattering off partonic medium constituents

simultaneous evolution in scale and space-time

- consistent perturbative formulation
- minimal modelling and tuning
- possibility to quantify uncertainties
- very reasonable description of variety of data
- hard structures cannot be perturbed by medium
- misses increase of soft multiplicity

energy transferred to background is lost

Jet quenching in perturbative QCD with JEWEI

Korinna ∠app

JEWEL summary

Jets and hydro in dialogue

Conclusions: Hydro & jets in dialogue

Our approach

- construct realistic source term for hydro evol. from jets
- characterise it in terms of averages and correlators

no need to do event-by-event hydro

Influence of hydro on jets

small differences between hydro and toy model smaller than current uncertainties

Influence of jets on hydro

- effect on temperature negligible
- small increase of radial flow
- effect of additional hard jets tiny
- potentially sizeable impact on correlations

work in progress - stay tuned

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

dialogue

Jet quenching in perturbative QCD with JEWEL

Korinna

JEWEL summary

dialogue Conclusions

$$\sigma_{i}(p,T) = \int_{0}^{|\hat{t}|_{\max}(p,T)} d|\hat{t}| \int_{x_{\min}(|\hat{t}|)}^{x_{\max}(|\hat{t}|)} dx \sum_{j \in \{q,\bar{q},g\}} f_{j}^{i}(x,|\hat{t}|) \frac{d\hat{\sigma}_{j}}{d|\hat{t}|}(x\hat{s},|\hat{t}|)$$

- neglect radiation off thermal parton
- requires a 'partonic pdf' $f_j'(x, |\hat{t}|)$ encodes possible radiation off hard parton
- keep only leading contribution to partonic cross section

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}|\hat{t}|}(\hat{s},|\hat{t}|) \approx C_{\mathsf{R}} 2\pi\alpha_{\mathsf{s}}^2(|\hat{t}| + \mu_{\mathsf{D}}^2) \frac{1}{(|\hat{t}| + \mu_{\mathsf{D}}^2)^2}$$

▶ regulated by $\mu_D^2 \approx 3 T$

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

Jets and hydro in

Jets and hydro in dialogue

Conclusions

partonic pdf's defined through DGLAP equation

$$f_{i}^{j}(x, Q^{2}) = S_{j}(Q^{2}, Q_{0}^{2})f_{i}^{j}(x, Q_{0}^{2})\delta_{ij}$$

$$+ \int_{Q^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} S_{i}(Q^{2}, q^{2}) \int_{x}^{z_{\text{max}}} \frac{dz}{z} \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} \sum_{k} \hat{P}_{ik}(z)f_{k}^{j}(x/z, q^{2})$$

ightharpoonup at the cut-off scale Q_0 one has

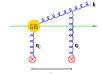
$$f_i^j(x, Q_0^2) = \begin{cases} \delta(1-x) & ; & i=j\\ 0 & ; & i\neq j \end{cases}$$

considering at most one emission one gets

$$f_{q}^{q}(x, Q^{2}) = S_{q}(Q^{2}, Q_{0}^{2})\delta(1 - x) + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} S_{q}(Q^{2}, q^{2}) \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} \hat{P}_{qq}(x)$$

etc.

Probabilistic formulation of the LPM-effect


- naive MC purely incoherent
- consider gluon radiation with two momentum transfers

Wiedemann, Nucl. Phys. B 588(2000),303

analytical calculation interpolates between

incoherent production

$$au_1 \ll L$$

coherent production

$$au_1\gg L$$

- ho $au_1 \equiv \frac{2\omega}{(\mathbf{k} + \mathbf{q}_1)^2}$ is the gluon formation time
- → momentum transfers during formation time act coherently

Jet quenching in perturbative QCD with JFWFI

Korinna Zapp

JEWEL summary

dialogue

coherent scattering centres act as one one momentum transfer:

$$\omega \frac{\mathrm{d}^3 I^{(1)}}{\mathrm{d}\omega \mathrm{d}\mathbf{k}} \propto \int \!\mathrm{d}\mathbf{q} \, |A(\mathbf{q})|^2 R(\mathbf{k}, \mathbf{q})$$

two momentum transfers:

$$\omega \frac{\mathrm{d}^3 I^{(2)}}{\mathrm{d}\omega \mathrm{d}\mathbf{k}} \propto \int \!\mathrm{d}\mathbf{q}_1 \,\mathrm{d}\mathbf{q}_2 \,|A(\mathbf{q}_1)|^2 |A(\mathbf{q}_2)|^2 R(\mathbf{k}, \mathbf{q}_1 + \mathbf{q}_2)$$

consistent determination of scattering centres and formation time

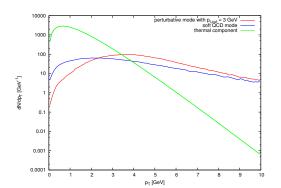
Emission probability

suppression compared to incoherent emission by factor $1/N_{\rm coh}$ $N_{\rm coh}$: number of coherent momentum transfers

Jet auenchina in perturbative QCD with JFWFL

Setup

Setup for 'typical event'


problem: jet cross section IR-divergent eikonalisation through MPI, but let's not go there...

two possible regularisations:

▶ 'perturbative mode': $p_{\perp,cut} = 3 \text{ GeV}$

default

▶ 'soft QCD mode': PYTHIA's minimum bias mode

Jet quenching in perturbative QCD with JEWEI

Korinna ∠app

JEWEL summary

dialogue

Setup

Setup for 'typical event'

- ▶ problem: jet cross section IR-divergent eikonalisation through MPI, but let's not go there...
- two possible regularisations:
 - ▶ 'perturbative mode': $p_{\perp,\text{cut}} = 3 \text{ GeV}$ default
 - ► 'soft QCD mode': PYTHIA's minimum bias mode
- $ightharpoons \langle N_{\text{di-jet}}
 angle = T_{AA} \sigma_{\text{di-jet}} \approx 1350 1700$
- ► large uncertainties (factor ~ 3)

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

dialogue

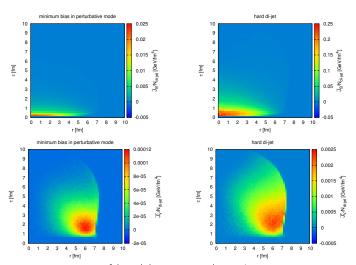
Setup

Setup for 'typical event'

- ▶ problem: jet cross section IR-divergent eikonalisation through MPI, but let's not go there...
- two possible regularisations:
 - ▶ 'perturbative mode': $p_{\perp,cut} = 3 \text{ GeV}$ default
 - ▶ 'soft QCD mode': PYTHIA's minimum bias mode
- $ightharpoons \langle N_{\text{di-jet}}
 angle = T_{AA} \sigma_{\text{di-jet}} \approx 1350 1700$
- ▶ large uncertainties (factor \sim 3)

Triggered di-jet event

- lacktriangle study effect of hard di-jet ightarrow $p_{\perp, {
 m cut}} = 100\,{
 m GeV}$
- ▶ need to add 'mini-jets' à la minimum bias mode


Jet quenching in perturbative QCD with JEWEL

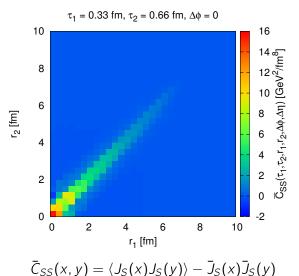
Korinna Zapp

JEWEL summary

dialogue

The source term of 100 GeV jets: averages

- lacktriangle source term of hard jets extends to later au
- global effect of hard di-jet negligible


Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

dialogue

The source term of MinBias events: Correlators

 $C_{SS}(x,y) = \langle J_S(x)J_S(y) \rangle - J_S(x)J_S(y)$

 \triangleright contributes to correlations (e.g. v_n)

Jet quenching in perturbative QCD with JEWEL

Korinna Zapp

JEWEL summary

Conclusions