Particle Production

and Currents
from a Topological Domain

Kenji Fukushima The University of Tokyo

Based on work in progress with Pablo Morales

Talk Plan

A Key Question

An Approach

Technical Details

A Key Question

CME (and related phenomena) alive or dead?

A Key Question

CME (and related phenomena) alive or dead? Famous (and confusing...) plot

Dec. 16, 2014 @ Heidelberg

A Key Question

CME (and related phenomena) alive or dead? Fine structure of correlations

A Key Question

CME (and related phenomena) alive or dead? Theory tells...

$$
\boldsymbol{j}=N_{c} \sum_{a} \frac{q_{f}^{2} \mu_{5}}{2 \pi^{2}} \boldsymbol{B}
$$

Useful for a practical purpose?

A Key Question

CME (and related phenomena) alive or dead? Theory tells...

$$
\boldsymbol{j}=N_{c} \sum_{a} \frac{q_{f}^{2} \mathscr{\mu}_{5}}{2 \pi^{2}} \boldsymbol{B}
$$

Useful for a practical purpose?

NO... unfortunately...

Example

$$
\begin{aligned}
& \begin{cases}\boldsymbol{B} & \text { WZW action in } \chi \mathbf{P T} \\
q_{0} \frac{d N_{\gamma}}{d^{3} q}=\frac{q_{z}^{2}+q_{x}^{2}}{2(2 \pi)^{3} \boldsymbol{q}^{2}} \cdot \frac{25 \alpha_{e} \zeta(\boldsymbol{q})}{9 \pi^{3}} \quad \text { Source for anisotropy } \\
\mathcal{L}_{\mathrm{P}}=\frac{N_{\mathrm{c}} e^{2} \operatorname{tr}\left(Q^{2}\right)}{8 N_{\mathrm{f}} \pi^{2}} \epsilon^{\mu \nu \rho \sigma}\left[\mathcal{A}_{\mu}\left(\partial_{\nu} \mathcal{A}_{\rho}\right)+\mathcal{A}_{\mu} \bar{F}_{\nu \rho}\right] \partial_{\sigma} \theta\end{cases} \\
& \zeta(\boldsymbol{q}) \equiv \mid \int d^{4} x e^{-i q \cdot x} e B(x) \mu_{5}(x) \quad \text { No concrete estimate... }
\end{aligned}
$$

Fukushima-Mameda (2010) cf. Basar-Kharzeev-Skokov

A Key Question

CME (and related phenomena) alive or dead? Short-lived magnetic field

Short-lived Magnetic Field

$$
\begin{aligned}
& \text { Color Glass Condensate (CGC) } \\
& \qquad \tau \lesssim 1 / Q_{s} \sim 0.1 \mathrm{fm} / \mathrm{c}
\end{aligned}
$$

Color Glass + Plasma $=$ Glasma

$$
\tau \lesssim \tau_{0} \sim 1 \mathrm{fm} / \mathrm{c}
$$

(s) Quark-Gluon Plasma $\tau \lesssim \tau_{f} \sim 10 \mathrm{fm} / \mathrm{c}$

Hadronization (quarks \rightarrow hadrons)

Short-lived Magnetic Field

Color Glass Condensate (CGC)
 $$
\tau \lesssim 1 / Q_{s} \sim 0.1 \mathrm{fm} / \mathrm{c}
$$

Color Glass + Plasma $=$ Glasma

$$
\tau \lesssim \tau_{0} \sim 1 \mathrm{fm} / \mathrm{c}
$$

(s) Quark-Gluon Plasma

$$
\tau \lesssim \tau_{f} \sim 10 \mathrm{fm} / \mathrm{c}
$$

Hadronization (quarks \rightarrow hadrons)

Initial State of HIC

Characterized

B

Topological charge density $\sim \mathcal{E} \cdot \mathcal{B} \sim Q_{s}^{4}$

Particle Production in Glasma

Gelis-Kajantie-Lappi (2005)

$$
\begin{aligned}
& M_{\tau}(p, q) \equiv \int \frac{\tau \mathrm{d} z \mathrm{~d}^{2} \mathbf{x}_{T}}{\sqrt{\tau^{2}+z^{2}}} \phi_{\mathbf{p}}^{\dagger}(\tau, \mathbf{x}) \gamma^{0} \gamma^{\tau} \psi_{\mathbf{q}}(\tau, \mathbf{x}) \\
& \frac{d N}{d y}=\int \frac{\mathrm{d} y_{p} \mathrm{~d}^{2} \mathbf{p}_{T}}{2(2 \pi)^{3}} \frac{\mathrm{~d} y_{q} \mathrm{~d}^{2} \mathbf{q}_{T}}{2(2 \pi)^{3}} \delta\left(y-y_{p}\right)\left|M_{\tau}(p, q)\right|^{2}
\end{aligned}
$$

Amplitude from anti-particles to particles

$$
\begin{aligned}
& \psi_{\mathbf{q}}(t \rightarrow-\infty, \mathbf{x})=e^{i q \cdot x} v(q) \\
& \phi_{\mathbf{p}}(x)=e^{-i p \cdot x} u(p)
\end{aligned}
$$

$$
\text { Dominated at } \tau<0.1 \mathrm{fm} / \mathrm{c}
$$

Everything happens at $\tau<0.1 \mathrm{fm} / \mathrm{c}$

Most Relevant Picture

Pulsed magnetic field
~ a few GeV
$<0.1 \mathrm{fm} / \mathrm{c}$

Dominated at short-time scale
$\sim 1-2 \mathrm{GeV}$
$<0.1 \mathrm{fm} / \mathrm{c}$

Most Relevant Picture

Pulsed magnetic field
~ a few GeV
$<0.1 \mathrm{fm} / \mathrm{c}$

No need for μ_{5} (case closed)
$\sim 1-2 \mathrm{GeV}$
$<0.1 \mathrm{fm} / \mathrm{c}$

An Approach

Particle (current) production with strong fields Electric Fields

$$
\boldsymbol{E}=-\boldsymbol{\nabla} \phi-\partial_{t} \boldsymbol{A}
$$

Pair production when energy conservation satisfied (Schwinger Mechanism)

An Approach

Particle (current) production with strong fields Electromagnetic Fields

Net particle production for R and L fermions "Carriers" for Hall and CME currents

Analytical Derivation

Schwinger process in K,

$$
\Gamma=\frac{q^{2} E_{z}^{\prime} B_{z}^{\prime}}{4 \pi^{2}} \operatorname{coth}\left(\frac{B_{z}^{\prime}}{E_{z}^{\prime}} \pi\right) \exp \left(-\frac{m^{2} \pi}{\left|q E_{z}^{\prime \mid}\right|}\right)
$$

Current generation rate
$\partial_{t} j_{y} \simeq \frac{q^{2} B_{y}}{2 \pi^{2}} \frac{g \mathcal{E}_{z} \mathcal{B}_{z}^{2}}{\mathcal{B}_{z}^{2}+\mathcal{E}_{z}^{2}} \operatorname{coth}\left(\frac{\mathcal{B}_{z}}{\mathcal{E}_{z}} \pi\right) \exp \left(-\frac{2 m^{2} \pi}{\left|g \mathcal{E}_{z}\right|}\right)$

Schematic Picture

B

Hall Current

Technical Details

Anomalous particle production on the lattice

Nielsen-Ninomiya Theorem
Chiral Symmetry \rightarrow Doublers \rightarrow No Anomaly

CME needs Chiral + Anomaly

Schwinger pair production is insufficient Net particle production is indispensable "Zero" when it should be zero

Should be checked in an ideal (test) setup

Technical Details

Anomalous particle production on the lattice

$$
B_{z}+B_{y}
$$

Checked before Glasma simulation

Put them for a finite period (pulse)

Produced Particle Density

Dec. 16, 2014@ Heidelberg

Hall current in the x-direction

Dec. 16,2014@ Heidelberg

CME current in the y-direction

Dec. 16, 2014@ Heidelberg

Ohm's current in the z -direction

Dec. 16,2014@ Heidelberg

Implication

Reasonable estimate
\square Chiral chemical potential $\sim Q_{s}$
\square Particle production \rightarrow Simultaneous current generation
\square Apply the formulation for Glasma (in progress)
\square Particle production in an expanding system
\square No need for sudden turn-off
\square Singularity at the light cone (cumbersome...)
Observable?
\square Not currents but particle distribution in experiments
\square Distribution in momentum space not gauge invariant
\square Easy to introduce a baryon chemical potential (BES)

Weyl Fermions

Two-component chiral fermions

$$
\left(i \sigma^{\mu} \partial_{\mu}-e \sigma^{\mu} A_{\mu}\right) \phi_{R}=0
$$

Free solution (with constant vector potentials)

$$
u_{R}(\boldsymbol{p} ; \boldsymbol{A})=u_{R}\left(\boldsymbol{p}_{A}=\boldsymbol{p}-e \boldsymbol{A}\right)=\binom{\sqrt{\left|\boldsymbol{p}_{A}\right|+p_{A}^{z}}}{e^{i \theta\left(\boldsymbol{p}_{A}\right)} \sqrt{\left|\boldsymbol{p}_{A}\right|-p_{A}^{z}}}
$$

Very singular at zero momentum - Berry's phase
Chiral anomaly from monopole singularity
Son-Yamamoto / Stephanov-Yin (2010)

Anti-Particles

$$
\begin{gathered}
\left(-i \bar{\sigma}^{\mu} \partial_{\mu}-e \bar{\sigma}^{\mu} A_{\mu}\right)(-i) \sigma^{2} \phi_{R}^{*}=0 \\
u_{\bar{R}}(\boldsymbol{p} ; \boldsymbol{A})=u_{R}\left(-\boldsymbol{p}_{-A}=-\boldsymbol{p}-e \boldsymbol{A}\right)=\binom{\sqrt{\left|\boldsymbol{p}_{-A}\right|-p_{-A}^{z}}}{-e^{i \theta\left(\boldsymbol{p}_{-A}\right)} \sqrt{\left|\boldsymbol{p}_{-A}\right|+p_{-A}^{z}}}
\end{gathered}
$$

Negative-energy components

$$
\begin{aligned}
& v_{R}(\boldsymbol{p} ; \boldsymbol{A})=i \sigma^{2} u_{\bar{R}}^{*}(\boldsymbol{p} ; \boldsymbol{A})=-e^{-i \theta\left(\boldsymbol{p}_{-A}\right)} u_{R}\left(\boldsymbol{p}_{-A}\right) \\
& v_{\bar{R}}(\boldsymbol{p} ; \boldsymbol{A})=-i \sigma^{2} u_{R}^{*}(\boldsymbol{p})=-e^{-i \theta\left(\boldsymbol{p}_{A}\right)} u_{\bar{R}}\left(\boldsymbol{p}_{A}\right)
\end{aligned}
$$

Bogoliubov Transformation

$\hat{\phi}_{R}(x)=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left(\hat{a}_{\boldsymbol{p}} \frac{u_{R}\left(\boldsymbol{p}_{A}\right) e^{-i\left|\boldsymbol{p}_{A}\right| x^{0}+i \boldsymbol{p} \cdot x}}{\sqrt{2\left|\boldsymbol{p}_{A}\right|}}+\hat{b}_{\boldsymbol{p}}^{\dagger} \frac{v_{R}\left(\boldsymbol{p}_{-A}\right) e^{i\left|\boldsymbol{p}_{-A}\right| x^{0}-i \boldsymbol{p} \cdot x}}{\sqrt{2\left|\boldsymbol{p}_{-A}\right|}}\right)$
No Momentum Mixture (Schwinger Problem)
$\frac{u_{R}\left(\boldsymbol{p}_{A}\right) e^{-i\left|\boldsymbol{p}_{A}\right| x^{0}+i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{A}\right|}} \longrightarrow \alpha_{\boldsymbol{p}} \frac{u_{R}\left(\boldsymbol{p}_{A^{\prime}}\right) e^{-i\left|\boldsymbol{p}_{\boldsymbol{A}^{\prime}}\right| x^{0}+i p \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{A^{\prime}}\right|}}-\beta_{-p}^{*} \frac{v_{R}\left(-\boldsymbol{p}_{\boldsymbol{A}^{\prime}}\right) e^{i\left|\boldsymbol{p}_{\boldsymbol{A}^{\prime}}\right| x^{0}+i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{\boldsymbol{A}^{\prime}}\right|}}$
$\frac{v_{R}\left(\boldsymbol{p}_{-A}\right) e^{i\left|\boldsymbol{p}_{-A}\right| x^{0}-i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{-A}\right|}} \longrightarrow \alpha_{\boldsymbol{p}}^{*} \frac{v_{R}\left(\boldsymbol{p}_{-A^{\prime}}\right) e^{i\left|\boldsymbol{p}_{-A^{\prime}}\right| x^{0}-i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{-A^{\prime}}\right|}}+\beta_{-\boldsymbol{p}} \frac{u_{R}\left(-\boldsymbol{p}_{-A^{\prime}}\right) e^{-i\left|\boldsymbol{p}_{-A^{\prime}}\right| x^{0}-i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{-A^{\prime}}\right|}}$
Positive- and Negative-energy Coefficients

$$
\begin{array}{r}
\hat{a}_{\boldsymbol{p}} \longrightarrow \hat{a}_{\boldsymbol{p}}^{\prime}=\alpha_{\boldsymbol{p}} \hat{a}_{\boldsymbol{p}}+\underbrace{}_{\beta_{\boldsymbol{p}} \hat{b}_{-\boldsymbol{p}}^{\dagger}}, \quad \hat{b}_{\boldsymbol{p}}^{\dagger} \longrightarrow \hat{b}_{\boldsymbol{p}}^{\prime \dagger}=\alpha_{\boldsymbol{p}}^{*} \hat{b}_{\boldsymbol{p}}^{\dagger}-\beta_{\boldsymbol{p}}^{*} \hat{a}_{-\boldsymbol{p}} \\
\text { Amplitude for Particle Production }
\end{array}
$$

Generalization

$$
\begin{aligned}
& \frac{u_{R}\left(\boldsymbol{p}_{A}\right) e^{-i\left|\boldsymbol{p}_{A}\right| x^{0}+i p \cdot x}}{\sqrt{2\left|\boldsymbol{p}_{A}\right|}} \rightarrow \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left[\alpha_{q, p} \frac{u_{R}\left(\boldsymbol{q}_{A^{\prime}}\right) e^{-i\left|\boldsymbol{A}^{\prime}\right|} \mid x^{0}+i \boldsymbol{q} \cdot x}{\sqrt{2\left|\boldsymbol{q}_{A^{\prime}}\right|}}-\beta_{-\boldsymbol{q},-\boldsymbol{p}}^{*} \frac{v_{R}\left(-\boldsymbol{q}_{\mathcal{A}^{\prime}}\right) e^{i\left|\boldsymbol{q}^{\prime}\right| x^{0}+i q \cdot x}}{\sqrt{2\left|\boldsymbol{q}_{A^{\prime}}\right|}}\right] \text {, } \\
& \frac{v_{R}\left(\boldsymbol{p}_{-A}\right) e^{i\left|\boldsymbol{p}_{-A}\right| x^{0}-i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{-A}\right|}} \longrightarrow \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left[\alpha_{\alpha_{, ~ P}^{*}}^{*} \frac{v_{R}\left(\boldsymbol{q}_{-A^{\prime}}\right)^{i\left|\boldsymbol{q}_{-A^{\prime}}\right| x^{0}-i \boldsymbol{q} \cdot x}}{\sqrt{2\left|\boldsymbol{q}_{-A^{\prime}}\right|}}+\beta_{-\boldsymbol{q},-\boldsymbol{p}} \frac{u_{R}\left(-\boldsymbol{q}_{-A^{\prime}}\right) e^{-i\left|\boldsymbol{q}_{-A^{\prime}}\right| x^{0}-i q \cdot x}}{\sqrt{2\left|\boldsymbol{q}_{-A^{\prime}}\right|}}\right] \\
& f_{\boldsymbol{p}}\left(x^{0} \sim-\infty, \boldsymbol{x}\right) \longrightarrow \frac{v_{R}\left(\boldsymbol{p}_{-A}\right) e^{i\left|\boldsymbol{p}_{-A}\right| x^{0}-i \boldsymbol{p} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{p}_{-A}\right|}} \\
& \beta_{\boldsymbol{q}, \boldsymbol{p}}=\int d^{3} \boldsymbol{x} \frac{u_{R}^{\dagger}\left(\boldsymbol{q}_{A^{\prime}}\right) e^{i\left|\boldsymbol{q}_{A^{\prime}}\right| x^{0}+i \boldsymbol{q} \cdot \boldsymbol{x}}}{\sqrt{2\left|\boldsymbol{q}_{A^{\prime}}\right|}} f_{-\boldsymbol{p}}\left(x^{0}, \boldsymbol{x}\right) \\
& \left|\beta_{\boldsymbol{p}}\right|^{2}=\int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left|\beta_{\boldsymbol{p}, \boldsymbol{q}}\right|^{2}
\end{aligned}
$$

Currents

$$
J^{\mu}=e V \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{\left|\beta_{\boldsymbol{p}}\right|^{2}}{2\left|\boldsymbol{p}_{A^{\prime}}\right|} u_{R}^{\dagger}\left(\boldsymbol{p}_{A^{\prime}}\right) \sigma^{\mu} u_{R}\left(\boldsymbol{p}_{A^{\prime}}\right)-e V \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{\left|\bar{\beta}_{\boldsymbol{p}}\right|^{2}}{2\left|\boldsymbol{p}_{-A^{\prime}}\right|^{2}} u_{\bar{R}}^{\dagger}\left(\boldsymbol{p}_{-A^{\prime}}\right) \bar{\sigma}^{\mu} u_{\bar{R}}\left(\boldsymbol{p}_{-A^{\prime}}\right)
$$

$$
J^{0} / e V=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left(\left|\beta_{\boldsymbol{p}}\right|^{2}-\left|\bar{\beta}_{\boldsymbol{p}}\right|^{2}\right), \quad J / e V=\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}}\left(\frac{\boldsymbol{p}_{A^{\prime}}}{\left|\boldsymbol{p}_{A^{\prime}}\right|}\left|\beta_{\boldsymbol{p}}\right|^{2}-\frac{\boldsymbol{p}_{-A^{\prime}}}{\left|\boldsymbol{p}_{-A^{\prime}}\right|}\left|\bar{\beta}_{\boldsymbol{p}}\right|^{2}\right)
$$

Use naive fermion with momentum integration only in one Brillouin zone (no doublers)

Chiral limit with Wilson fermion is very non-trivial (at the edge of the Aoki phase)

