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The current from the usual chiral Lagrangian Lχ at the
lowest order results in

jµχ = −i
ef2

π

4
tr
[(
Σµ − Σ̃µ

)
τ3
]

≃ e
(
π−i∂µπ+ − π+i∂µπ−)+ · · · ,

(9)

which represents the electric current carried by the flow
of charged pions, π±, which is clear from the expanded
expression. There appears no term involving ∂µθ in this
part. More non-trivial and interesting is the current as-
sociated with the WZW terms, leading to

jµWZW = −Nctr(Q)

32π2
ϵµνρσ

{
2ie2tr

[
(Σν + Σ̃ν)τ3

]
∂ρAσ

+ e2tr
[
∂ρ(Σν + Σ̃ν)τ3

]
Aσ − 2e

3
tr(ΣνΣρΣσ)

}
, (10)

The physical meaning of this current will be transparent
in the expanded form using U ∼ 1+iπ ·τ/fπ+ · · · . Then
we find that the first term in Eq. (10) is written as,

jµWZW =
Nctr(Q)e2

8π2fπ
ϵµνρσ(∂νπ

0)Fρσ . (11)

The second term in Eq. (10) is vanishing and the last
term represents a topological current purely from the en-
tanglement of all π0 and π±. The physics implication of
Eq. (11) has been discussed with the π0-domain wall [9]
and the pion profile in the Skyrmion [27]. Finally we can
reproduce the CME current from the contact interaction
as

jµP =
Nc e2 tr(Q2)

4Nf π2
ϵµνρσ(∂νAρ) ∂σθ . (12)

We can rewrite the above expression in a more familiar
form using µ5 = ∂0θ/(2Nf) and Bi = ϵijk∂jAk to reach,

jP =
Nc e2 tr(Q2)

2π2
µ5B . (13)

It should be noted that ϵ0123 = +1 in our convention.
This derivation of the CME is quite suggestive on its

own and worth several remarks.
First, it is known that the contact term LP is not

renormalization-group invariant [25]. This means that
LP and thus jP are scale dependent like the running cou-
pling constant. It is often said that jP is an exact result
from the quantum anomaly, but it may be a little mis-
leading. The functional form itself could be protected
(though there is no rigourous proof) but B and µ5 in
Eq. (13) should be renormalized ones. Indeed it has been
pointed out that interaction vertices in the (axial) vector
channels result in the dielectric correction to B [28]. The
knowledge on the chiral Lagrangian strongly supports the
results of Ref. [28].
Second, to find Eq. (13), we do not need quark degrees

of freedom explicitly but only hadronic variables. This
is naturally so because the idea of the WZW action is to
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FIG. 1. Schematic figure for the single photon production as
a consequence of the axial anomaly and the external mag-
netic field. The angular distribution of the emitted photons
is proportional to (q2z + q2x)/(q

2
x + q2y + q3z) where qy is in the

direction parallel to B and qz and qx perpendicular to B.

capture the anomalous effects from the ultraviolet regime
in terms of infrared variables. It is clear from the above
derivation, therefore, that the CME occurs without mass-
less quarks in the quark-gluon plasma. (See also Ref. [29]
for another derivations of the CME without referring to
quarks explicitly.) Then, a conceptual confusion might
arise; what really flows that contributes to an electric
current in the hadronic phase? One may have thought
that it is π±, but such a current is rather given by jµχ ,
and the CME current jµP originates from the contact part
that is decoupled from U . The same question is applied
to Eq. (11) if the system has a π0 condensation.

In a sense these currents associated with the θ(x) or
π0(x) backgrounds are reminiscent of the Josephson cur-
rent in superconductivity. Suppose that we have a π0

condensate, then such a coherent state behaves like a
macroscopic wave-function of π0 field. Then, a micro-
scopic current inside of the wave-function π0 could be a
macroscopic current in the whole system since the wave-
function spreads over the whole system. In the case of
the CME, θ(x) or η0(x) plays the same role as π0(x). In
this way, strictly speaking, it is a high-momentum com-
ponent of quarks and anti-quarks in the wave-function of
π0 or η0 that really flow to make a current, though these
quarks do not have to get deconfined.

This sort of confusing interpretation of the CME cur-
rent arises from the assumption that θ(x) and B(x) are
spatially homogeneous. Once this assumption is relaxed,
as we discuss in what follows, an interesting new possi-
bility opens, which may be more relevant to experiments.

From now on, let us revisit Eq. (7) from a different
point of view. If we literally interpret Eq. (7) as usual in
the quantum field theory, it should describe a vertex of
the processes involving two photons and the θ field such
as θ → γγ and θ+B → γ in the magnetic field. The lat-
ter process can be viewed as the reverse of the Primakoff
effect involving the θ(x) background instead of neutral
mesons. It is a very intriguing question how much pho-
ton can be produced from this reverse Primakoff effect.
For this purpose we shall decompose the vector potential
into the background Āµ (corresponding to B) and the
fluctuation Aµ (corresponding to photon). Then, Eq. (7)
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turns into

LP =
Nc e2 tr(Q2)

8Nf π2
ϵµνρσ

[
Aµ(∂νAρ)+AµF̄νρ

]
∂σθ , (14)

where the first term represents the two-photon produc-
tion process θ → γγ similar to π0 → γγ, and the sec-
ond represents the reverse Primakoff effect (θ + B → γ)
involving the background field strength F̄µν = ∂µĀν −
∂νĀµ. Here we are interested only in the situation that
the background field is so strong that we can neglect the
contribution from the first term.
Even when |eB| ∼ ΛQCD in the heavy-ion collision,

we can still utilize the perturbative expansion in terms
of the electromagnetic coupling constant. In the leading
order, from the LSZ reduction formula, the S-matrix ele-
ment for the single-photon production with the momen-
tum q = (|q|, q) and the polarization ε(i)(q) is deduced
immediately from the vertex (14),

iM(i; q) = ⟨ε(i)(q)|Ω⟩ = i
Nc e2 tr(Q2)

8Nf π2
√
(2π)32q0

× ϵµνρσε(i)µ(q)

∫
d4x e−iq·xF̄νρ(x) ∂σθ(x) ,

(15)

where q0 = |q|. This expression becomes very simple
when the background field has only the magnetic field in
the y direction, i.e.B = F̄zx and the rest is just vanishing.
Thus, we have,

ϵµνρσε(i)µ(q)

∫
d4x e−iq·xF̄νρ(x) ∂σθ(x)

= −2ε(i)y(q)

∫
d4x e−iq·xB(x) ∂0θ(x) ,

(16)

and replacing ∂0θ by the chiral chemical potential µ5 by
µ5 = ∂0θ/(2Nf) and using

∑
i ε

(i)j(q) ε(i)k(q) = δjk −
qjqk/q2 with q2 = q2x + q2y + q2z , we can finally arrive at

q0
dNγ

d3q
= q0

∑

i

|M(i; q)|2

=
1− (qy)2/q2

2(2π)3

(
Nc e2 tr(Q2)

2π2

∫
d4x e−iq·xB(x)µ5(x)

)2

=
q2z + q2x
2(2π)3q2

· 25αe ζ(q)

9π3
, (17)

where we used Nc = 3 and tr(Q2) = 5/9 for the two-
flavor case in the last line and αe ≡ e2/(4π) ≃ 1/137 is
the fine structure constant. In the above we defined,

ζ(q) ≡
∣∣∣∣
∫

d4x e−iq·xeB(x)µ5(x)

∣∣∣∣
2

. (18)

It is quite interesting to see that the final expression is
proportional to the momenta q2z + q2x which are perpen-
dicular to the B direction. This could be another source
for the elliptic flow v2 of the direct photon in a similar
mechanism as pointed out in Ref. [19].

Because there is no reliable model to predict µ5(x),
it is difficult to calculate ζ(q) as a function of the mo-
mentum. For a first attempt, therefore, let us make a
qualitative order estimate. The strength of the mag-
netic field is as large as Λ2

QCD or even bigger at initial
time. A natural scale for µ5 is also given by ΛQCD,
or if the origin of the LPV is the color flux-tube struc-
ture in the Glasma [21], the typical scale is the satu-
ration momentum Qs ∼ 2 GeV for the RHIC energy.
The space-time integration picks up the volume factor
∼ τ20A⊥ with τ0 being the life time of the magnetic field,
i.e. τ0 ≃ 0.01 ∼ 0.1 fm/c, and A⊥ the transverse area
∼ 150 fm2 for the Au-Au collision. Then, ζ ≃ 0.1 ∼ 103,
where the smallest estimate for τ0 = 0.01 fm/c and
µ5 ∼ ΛQCD and the largest one for τ0 = 0.1 fm/c
and µ5 ∼ Qs. Then, the photon yield is expected
to be q0(dNγ/d3q) ≃ (10−7 ∼ 10−3)GeV−2. This is
of detectable level of the photon yield as compared to
the conventional photon production from the thermal
medium [30]. If the backreactions to sustain B work
efficiently, the relevant time scale τ0 may be replaced by
the life time of the plasma. Then, the photon contribu-
tion from the reverse Primakoff effect would be enhanced
and appreciable even at the LHC energy.

We also remark about a hard scale such as Qs in
the above estimate. We postulated that the interaction
vertex (14) makes sense also in the ultraviolet regime
since the CME current (13) is kept unchanged through
renormalization, which extends the validity of Eq. (14)
to ultraviolet scales. It would be a non-trivial question
whether or how the anomaly matching between the ul-
traviolet and infrared degrees of freedom could be real-
ized, including a formalism based on the vector domi-
nance [11], which is beyond our current scope.

One may think that not only the polarization but also
ζ(q) has strong asymmetry because of the presence of B.
The typical domain size of the LPV should be, however,
much smaller than the impact factor b ∼ a few fm at least,
and thus the asymmetry effect turns out only negligible.
In reality, depending on the spatial position, there are
not only By, but Bx and Bz and also the electric fields
Ex, Ey, and Ez. We are now performing full numerical
calculations including all those fields and the LPV based
on the Glasma flux-tube picture, which will be reported
in a future publication.

In summary, we have formulated the CME in terms
of the chiral Lagrangian with the WZW terms, which
provides us with the physics picture to understand the
CME in the hadronic phase. We derived the current of
the CME correctly from the contact term that is not RG
invariant. We established how the CME could be realized
through η0(x) as a result of the DCC in the iso-singlet
channel. Then, the key observation in view of the chiral
Lagrangian is that the vertex responsible for the CME
also describes the single photon production. We have
given the expression for the photon yield to find that
its angular distribution is asymmetric with the direction
perpendicular to B more preferred. We made a qualita-

WZW action in cPT
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for the elliptic flow v2 of the direct photon in a similar
mechanism as pointed out in Ref. [19].

Because there is no reliable model to predict µ5(x),
it is difficult to calculate ζ(q) as a function of the mo-
mentum. For a first attempt, therefore, let us make a
qualitative order estimate. The strength of the mag-
netic field is as large as Λ2

QCD or even bigger at initial
time. A natural scale for µ5 is also given by ΛQCD,
or if the origin of the LPV is the color flux-tube struc-
ture in the Glasma [21], the typical scale is the satu-
ration momentum Qs ∼ 2 GeV for the RHIC energy.
The space-time integration picks up the volume factor
∼ τ20A⊥ with τ0 being the life time of the magnetic field,
i.e. τ0 ≃ 0.01 ∼ 0.1 fm/c, and A⊥ the transverse area
∼ 150 fm2 for the Au-Au collision. Then, ζ ≃ 0.1 ∼ 103,
where the smallest estimate for τ0 = 0.01 fm/c and
µ5 ∼ ΛQCD and the largest one for τ0 = 0.1 fm/c
and µ5 ∼ Qs. Then, the photon yield is expected
to be q0(dNγ/d3q) ≃ (10−7 ∼ 10−3)GeV−2. This is
of detectable level of the photon yield as compared to
the conventional photon production from the thermal
medium [30]. If the backreactions to sustain B work
efficiently, the relevant time scale τ0 may be replaced by
the life time of the plasma. Then, the photon contribu-
tion from the reverse Primakoff effect would be enhanced
and appreciable even at the LHC energy.

We also remark about a hard scale such as Qs in
the above estimate. We postulated that the interaction
vertex (14) makes sense also in the ultraviolet regime
since the CME current (13) is kept unchanged through
renormalization, which extends the validity of Eq. (14)
to ultraviolet scales. It would be a non-trivial question
whether or how the anomaly matching between the ul-
traviolet and infrared degrees of freedom could be real-
ized, including a formalism based on the vector domi-
nance [11], which is beyond our current scope.

One may think that not only the polarization but also
ζ(q) has strong asymmetry because of the presence of B.
The typical domain size of the LPV should be, however,
much smaller than the impact factor b ∼ a few fm at least,
and thus the asymmetry effect turns out only negligible.
In reality, depending on the spatial position, there are
not only By, but Bx and Bz and also the electric fields
Ex, Ey, and Ez. We are now performing full numerical
calculations including all those fields and the LPV based
on the Glasma flux-tube picture, which will be reported
in a future publication.

In summary, we have formulated the CME in terms
of the chiral Lagrangian with the WZW terms, which
provides us with the physics picture to understand the
CME in the hadronic phase. We derived the current of
the CME correctly from the contact term that is not RG
invariant. We established how the CME could be realized
through η0(x) as a result of the DCC in the iso-singlet
channel. Then, the key observation in view of the chiral
Lagrangian is that the vertex responsible for the CME
also describes the single photon production. We have
given the expression for the photon yield to find that
its angular distribution is asymmetric with the direction
perpendicular to B more preferred. We made a qualita-

Source for anisotropy

No concrete estimate…

Fukushima-Mameda (2010) 
cf. Basar-Kharzeev-Skokov
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follows. Choose an antiquark of momentum q and mass
m and solve as a function of time the Dirac equation
with this color field for the spinor ψq(t,x) which in
the distant past is given by the negative energy spinor
ψq(t → −∞,x) = eiq·xv(q). The time integration brings
in positive energy components and consists of three
qualitatively different domains, see Fig. 1. The region

x± < 0 is trivial. The regions marked A(1)
i , A(2)

i can be
dealt with analytically [19] and one obtains an initial
condition for ψq(τ = 0, z,xT ) along the positive light
cones. This rather complicated initial condition, given
explicitly in Eq. (16) of [19], depends on the Wilson
lines U(1)(xT ), U(2)(xT ) corresponding to the gauge
fields of the nuclei, the initial color field Ai(0,xT ) and
on yq,qT , z,xT . The spinor ψq(t,x) at τ > 0 is then
computed by solving the Dirac equation in the given
color field forward in time. Finally, one chooses a quark
momentum p and forms the overlap between a positive
energy spinor2 φp(x) = e−ip·xu(p) and the outcome of
the time evolution of the negative energy spinor in the
distant past:

Mτ (p, q) ≡
∫

τdzd2xT√
τ2 + z2

φ†
p
(τ,x)γ0γτψq(τ,x) . (1)

The overlap is computed at fixed τ , hence the use of γτ ,
γ0γτ = cosh η − γ0γ3 sinh η = exp(−ηγ0γ3). This is also
the reason for the Jacobian factor τdz/

√
τ2 + z2 in the

longitudinal integration. We evaluate Eq. (1) in the 2-
dimensional Coulomb gauge ∂iAi = 0. This is the gauge
condition used in the Abelian case [18] and also the one
used to evaluate the number of gluons in the background
field. Eq. (1) gives us

dN

dy
=

∫

dypd2pT

2 (2π)3
dyqd2qT

2 (2π)3
δ
(

y − yp) |Mτ (p, q)|2 , (2)

the number of quarks of one flavor of mass m per unit
rapidity (since an equal number of antiquarks are pro-
duced, we refer to this quantity as the “number of pairs”
below). Since the gluon fields are η–independent, dN/dy
is independent of y. We shall compute (2) for all τ but it
is only after the “formation time” τ >∼ 1/

√

q2
T + m2 that

the produced antiquarks can reinteract. Since one ex-
pects qT ∼ g2µ, this limit for light quarks is τ >∼ 1/(g2µ).

The parameters of the computation are the coupling g
(constant in this semiclassical set-up; we use the phe-
nomenologically relevant value g = 2, αs = 0.3) the
source density parameter µ (depends on atomic number
A and collision energy

√
s) the nuclear radius RA and the

quark mass m (like with g there is nothing in this semi-
classical set-up which would make m scale dependent).

2 Whether it is justified to use a free spinor at a finite τ in the
presence of the external field merits further study.
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FIG. 2: Dependence on proper time τ of the number of pairs
per unit rapidity dN/dy for g2µ = 2 GeV and for values of
quark mass marked on the figure. The lowest curve corre-
sponds to g2µ = 1 GeV.
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FIG. 3: Dependence of the number of quark pairs on quark
mass at a fixed proper time, τ = 0.25 fm, and for two values
of g2µ.

Two relevant parameter combinations are g2µ and
g2µRA. The first one, g2µ, is the dominant transverse
momentum scale of the classical background field. It
is related to the saturation scale Qs; for kT < Qs the
gluonic system becomes so dense that nonlinear interac-
tions limit the growth of its density, numerically in one
phenomenological model [20] Qs ≈ 0.2 GeVA0.128√s

0.19
,

Qs ≈ 1 GeV at RHIC energies and ≈ 2 GeV at LHC en-
ergies. The dimensionless diluteness parameter g2µRA

determines the importance of nonlinear strong field ef-
fects.

The numerical computation is done on a N2
T NL lattice

so that the total transverse area is (NT a)2 = π(6.7 fm)2,
i.e., the transverse lattice spacing is a = 11.8 fm/NT =
60/NT · 1/GeV. The results presented in this letter have
been obtained with NT = 180, NL = 400, dz = 0.2a and
dτ = 0.02a. At each site one has for each color a spinor
with 4 complex components, i.e., (Nc = 3)×2×4×4 = 96
bytes in single precision, giving a total of 96 ·1802 ·400 =
1.2 GB. This illustrates the memory requirement of the
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nomenologically relevant value g = 2, αs = 0.3) the
source density parameter µ (depends on atomic number
A and collision energy

√
s) the nuclear radius RA and the

quark mass m (like with g there is nothing in this semi-
classical set-up which would make m scale dependent).

2 Whether it is justified to use a free spinor at a finite τ in the
presence of the external field merits further study.
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FIG. 2: Dependence on proper time τ of the number of pairs
per unit rapidity dN/dy for g2µ = 2 GeV and for values of
quark mass marked on the figure. The lowest curve corre-
sponds to g2µ = 1 GeV.
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FIG. 3: Dependence of the number of quark pairs on quark
mass at a fixed proper time, τ = 0.25 fm, and for two values
of g2µ.

Two relevant parameter combinations are g2µ and
g2µRA. The first one, g2µ, is the dominant transverse
momentum scale of the classical background field. It
is related to the saturation scale Qs; for kT < Qs the
gluonic system becomes so dense that nonlinear interac-
tions limit the growth of its density, numerically in one
phenomenological model [20] Qs ≈ 0.2 GeVA0.128√s

0.19
,

Qs ≈ 1 GeV at RHIC energies and ≈ 2 GeV at LHC en-
ergies. The dimensionless diluteness parameter g2µRA

determines the importance of nonlinear strong field ef-
fects.

The numerical computation is done on a N2
T NL lattice

so that the total transverse area is (NT a)2 = π(6.7 fm)2,
i.e., the transverse lattice spacing is a = 11.8 fm/NT =
60/NT · 1/GeV. The results presented in this letter have
been obtained with NT = 180, NL = 400, dz = 0.2a and
dτ = 0.02a. At each site one has for each color a spinor
with 4 complex components, i.e., (Nc = 3)×2×4×4 = 96
bytes in single precision, giving a total of 96 ·1802 ·400 =
1.2 GB. This illustrates the memory requirement of the

Dominated at t < 0.1fm/c

Amplitude from 
 anti-particles to  
  particles
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Fig. 5. Left: Time evolution of the chromo-electric and the chromo-magnetic fields.
The subscripts, L and T , represent the longitudinal and the transverse fields, re-
spectively. Right: The longitudinal and the transverse pressures as a function of
time.

is rather smooth even though the source ρ̄(x⊥) has random fluctuations.
This smoothness is not physical, however, and the gauge fields are furiously
fluctuating as shown in the right panel of Fig. 4. It is worth noting that
the color-flux tube picture as sketched in Fig. 3 is not the case in the MV
model and the JIMWLK evolution is indispensable to take account of the
flux tube structure.

The physical observables are measured by taking an ensemble average
of results with different initial ρ̄(x⊥)’s. It is useful to compute not only the
energy density (31) but also other combinations of the energy-momentum
tensor. In particular the following pressures are important in order to judge
how anisotropic the system is;

PT =
1

2

〈
T xx + T yy

〉
=

〈
tr
[
E2

L
+B2

L

]〉
, (35)

PL =
〈
τ2T ηη

〉
=

〈
tr
[
E2

T
+B2

T
− E2

L
−B2

L

]〉
, (36)

where the longitudinal and transverse chromo-electric and chromo-magnetic
fields are defined as

E2
L
= EηaEηa , E2

T
=

1

τ2
(
ExaExa + EyaEya

)
, (37)

B2
L
= Fa

12Fa
12 , B2

T
=

1

τ2
(
Fa
ηxFa

ηx + Fa
ηyFa

ηy

)
. (38)

The numerical results from the numerical Glasma simulation are pre-
sented in Fig. 5. From this figure it is clear that there are only longitudinal
fields E2

L
and B2

L
right at the collision (τ = 0) as explained with Fig. 3. The

transverse fields are developing as τ increases, and eventually the longitu-
dinal and the transverse fields approach each other at g2µτ > 1. This does

~ 0.1fm/c

Free streaming  
changed by fluctuations

Robust

B
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FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
ϵzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q⟨ψ̄γµψ⟩ in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])

Γ =
q2E′

zB
′

z

4π2
coth

(

B′

z

E′
z

π

)

exp

(

−
m2π

|qE′
z|

)

. (1)

The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m ̸= 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z ≫ E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′

z ≫ E′

z in Eq. (1) gives

Γ sgn(E′

zB
′

z) ≈
q2

4π2
E′

zB
′

z exp

(

−
m2π

|qE′
z|

)

= 1

2
∂t′n

′

5, (2)

which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =

Glasma

Pulsed magnetic field
~ a few GeV 
< 0.1fm/c

~ 1-2 GeV 
< 0.1fm/cDominated at short-time scale
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FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
ϵzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q⟨ψ̄γµψ⟩ in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])

Γ =
q2E′

zB
′

z

4π2
coth

(

B′

z

E′
z

π

)

exp

(

−
m2π

|qE′
z|

)

. (1)

The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m ̸= 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z ≫ E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′

z ≫ E′

z in Eq. (1) gives

Γ sgn(E′

zB
′

z) ≈
q2

4π2
E′

zB
′

z exp

(

−
m2π

|qE′
z|

)

= 1

2
∂t′n

′

5, (2)

which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =

Glasma

Pulsed magnetic field
~ a few GeV 
< 0.1fm/c

~ 1-2 GeV 
< 0.1fm/cNo need for µ5  (case closed)
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ ̸= 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
B′

z

Ez
ey + cosh2 η

2E′

z

Ez
ez

)

sgn(qE′

z).

(3)
We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2

z + B′2
z ). Because both F = 1

4
FµνFµν =

1

2
(B2

y +B2
z −E2

z ) =
1

2
(B′2

z −E′2
z ) and H = − 1

4
Fµν F̃µν =

EzBz = E′

zB
′

z are Lorentz invariant, one finds a ≡ |E′

z | =
(
√
F2 +H2−F)1/2, and b ≡ |B′

z| = (
√
F2 +H2+F)1/2.

Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By

π2

ab2sgn(EzBz)

a2 + b2
coth

(

πb

a

)

exp

(

−
m2π

|qa|

)

(4)
where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation

1

|q|
∂tjy
∂tn5

=
2q2Byb coth (πb/a)

q2(a2 + b2 +B2
y) +

1

4
g2(E2

z + B2
z)
. (5)
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy ≫ gEz, gBz, we have

b ≃ |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a ≃ | g
2qEz|

and b ≃ | g
2qBz| so that

∂tjy ≃
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz

Ez
π

)

exp

(

−
2m2π

|gEz|

)

. (6)
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FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
ϵzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q⟨ψ̄γµψ⟩ in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])

Γ =
q2E′

zB
′

z

4π2
coth

(

B′

z

E′
z

π

)

exp

(

−
m2π

|qE′
z|

)

. (1)

The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m ̸= 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z ≫ E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′

z ≫ E′

z in Eq. (1) gives

Γ sgn(E′

zB
′

z) ≈
q2

4π2
E′

zB
′

z exp

(

−
m2π

|qE′
z|

)

= 1

2
∂t′n

′

5, (2)

which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =

Schwinger process in K’

Current generation rate
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ ̸= 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
B′

z

Ez
ey + cosh2 η

2E′

z

Ez
ez

)

sgn(qE′

z).

(3)
We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2

z + B′2
z ). Because both F = 1

4
FµνFµν =

1

2
(B2

y +B2
z −E2

z ) =
1

2
(B′2

z −E′2
z ) and H = − 1

4
Fµν F̃µν =

EzBz = E′

zB
′

z are Lorentz invariant, one finds a ≡ |E′

z | =
(
√
F2 +H2−F)1/2, and b ≡ |B′

z| = (
√
F2 +H2+F)1/2.

Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By

π2

ab2sgn(EzBz)

a2 + b2
coth

(

πb

a

)

exp

(

−
m2π

|qa|

)

(4)
where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation

1

|q|
∂tjy
∂tn5

=
2q2Byb coth (πb/a)

q2(a2 + b2 +B2
y) +

1

4
g2(E2

z + B2
z)
. (5)
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy ≫ gEz, gBz, we have

b ≃ |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a ≃ | g
2qEz|

and b ≃ | g
2qBz| so that

∂tjy ≃
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz

Ez
π

)

exp

(

−
2m2π

|gEz|

)

. (6)Fukushima-Kharzeev- 
-Warringa (2010)
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B

E

Electric currents flow  
 in directions perpendicular to E

Ohm’s Law

Hall Current

CME
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Technical Details
Anomalous particle production on the lattice 

Nielsen-Ninomiya Theorem 
Chiral Symmetry → Doublers → No Anomaly 

Schwinger pair production is insufficient 
Net particle production is indispensable

CME needs Chiral + Anomaly

“Zero” when it should be zero

Should be checked in an ideal (test) setup
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Technical Details
Anomalous particle production on the lattice 

Bz+By

Ez

jx

jy

Put them for a finite period (pulse)

Checked before Glasma simulation
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Produced Particle Density
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Hall current in the x-direction
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CME current in the y-direction
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Ohm’s current in the z-direction
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Implication

Reasonable estimate 
□Chiral chemical potential ~ Qs 
□ Particle production → Simultaneous current generation 
Apply the formulation for Glasma (in progress) 
□ Particle production in an expanding system 
□No need for sudden turn-off 
□ Singularity at the light cone (cumbersome…) 
Observable ? 
□Not currents but particle distribution in experiments 
□Distribution in momentum space not gauge invariant 
□ Easy to introduce a baryon chemical potential (BES)

27
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Two-component chiral fermions

A note on the fermionic particle production

Kenji Fukushima

I. DIRAC EQUATION AND TWO-COMPONENT SPINORS

We work with the convention: g
µ⌫

= diag(1,�1,�1,�1) and ✏0123 = �✏0123 = 1. The Dirac equation with a gauge
field A

µ

reads;
⇣
i�

µ

@

µ

� e�

µ

A

µ

�m

⌘
 (x) = 0 . (1)

We use the Weyl representation of the �-matrix defined by

�

µ =

✓
0 �

µ

�̄

µ 0

◆
, �

5 = i�

0
�

1
�

2
�

3 =

✓
�1 0
0 1

◆
, (2)

where �µ = (1,�) and �̄µ = (1,��), which means �
µ

= �̄

µ and �̄
µ

= �

µ in our convention of g
µ⌫

.
In the chiral limit the Dirac equation can be split into the right-handed sector;

�
i�

µ

@

µ

� e�

µ

A

µ

�
�

R

= 0 , (3)

and the left-handed sector;
�
i�̄

µ

@

µ

� e�̄

µ

A

µ

�
�

L

= 0 . (4)

We note that the original Dirac spinor is  = (�
L

,�

R

)t. Hereafter we focus on the right-handed sector only. In
momentum space the Dirac equation for the right-handed two-component spinor with positive energy is

⇥
(p0 � eA0)� � · (p� eA)

⇤
u

R

(p;A
µ

)e�ip·x = 0 , (5)

if we have a constant background of A0 and A (as is the case with a constant electric field background). For simplicity
we shall take a gauge of A0 = 0. We can easily find the positive-energy particle solution of the free massless Dirac
equation as

u

R

(p;A) = u

R

(p
A

= p� eA) =

✓ p
|p

A

|+ p

z

A

e

i✓(p
A

)
p
|p

A

|� p

z

A

◆
, e

i✓(p
A

) =
p

x

A

+ ip

y

Ap
(px

A

)2 + (py
A

)2
. (6)

The Dirac equation can be transformed with simple algebra into
�
�i�̄

µ

@

µ

� e�̄

µ

A

µ

�
(�i)�2

�

⇤
R

= 0 . (7)

Therefore, the anti-particle solution, �
R̄

= �i�

2
�

⇤
R

satisfies the same equation for the left-handed particles with the
sign of e flipped. This means that we can define the solution of the positive-energy anti-particle as

u

R̄

(p;A) = u

R

(�p�A

= �p� eA) =

0

@

q
|p�A

|� p

z

�A

�e

i✓(p�A

)
q

|p�A

|+ p

z

�A

1

A
. (8)

For the negative energy states we can define:

v

R

(p;A) = i�

2
u

⇤
R̄

(p;A) = �e

�i✓(p�A

)
u

R

(p�A

) , v

R̄

(p;A) = �i�

2
u

⇤
R

(p) = �e

�i✓(p
A

)
u
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(p
A

) (9)

which means that we have

v

R

(p;A) =

0

@
�e

�i✓(p�A
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|p�A
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q
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|+ p

z
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◆
. (10)

We note that u

R

(p;A) and v

R̄

(p;A) have an energy |p
A

|, while other two u

R̄

(p;A) and v

R

(p;A) have an energy
|p�A

|.
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Free solution (with constant vector potentials)

Very singular at zero momentum — Berry’s phase

Chiral anomaly from monopole singularity  
                            Son-Yamamoto / Stephanov-Yin (2010)
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A note on the fermionic particle production

Kenji Fukushima

I. DIRAC EQUATION AND TWO-COMPONENT SPINORS

We work with the convention: g
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2

We chose the normalization as
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and the orthogonality relations are realized as
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It will turn out that these relations are important to make a projection to the positive- and negative-energy states.
Furthermore, it will be useful for the computation of the electric current to recognize:
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We can also confirm that
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II. EXPECTATION VALUE OF THE NUMBER OPERATOR

The field operator of the right-handed particle can be expanded as
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The field operator of the right-handed anti-particle can be expanded as
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As a first step, let us now assume a very simple problem of the Schwinger mechanism without mode mixing. Then
we can postulate that the wave-functions change through the interaction e↵ects as
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associated with a change in the vector potential: A ! A

0. It is very important to note that v
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where the normalization condition is |↵
p

|2 + |��p

|2 = 1 that guarantees the fermi statistics. Then, if we measure the
particle number operator of the future state with the initial state, the initial state is regarded as a state with non-zero
particles. We should pick up contributions non-vanishing with these creation and annihilation operators. That is,
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which leads to the electric charge density and the current density as
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As a first step, let us now assume a very simple problem of the Schwinger mechanism without mode mixing. Then
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where the normalization condition is |↵
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|2 = 1 that guarantees the fermi statistics. Then, if we measure the
particle number operator of the future state with the initial state, the initial state is regarded as a state with non-zero
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III. GENERALIZATION

We need a more general setup to read the produced particle density and associated current for complicated time
evolutions. With spatial inhomogeneity or magnetic fields, the Bogoliubov mixing should be generalized as
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From these transformations we can deduce the corresponding changes of the creation and annihilation operators as
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Suppose that we have general functions, f
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then, we can project out the produced particle amplitude as

�

q,p

=

Z
d

3
x

u

†
R

(q
A

0)ei|qA

0 |x0+iq·x
p

2|q
A

0 |
f�p

(x0
,x) , �̄

q,p

=

Z
d

3
x

u

†
R̄

(q�A

0)ei|q�A

0 |x0+iq·x
p

2|q�A

0 |
f̄�p

(x0
,x) . (27)

Then we can use the previous formulas with

|�
p

|2 =

Z
d

3
q

(2⇡)3
|�

p,q

|2 , |�̄
p

|2 =

Z
d

3
q

(2⇡)3
|�̄

p,q

|2 (28)

IV. NUMERICAL TEST WITH E

In the lattice discretized framework we should use the link variable defined as
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Now let us take a

i = 1 (or take this as the unit to measure dimensional quantities) hereafter. So, the updated field is
solved as
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We keep the spatial part to be Hermitian because we find that the numerical simulation would be unstable otherwise.
Let us consider a solvable Schwinger problem as a numerical check. We put an electric field in z direction by the

gauge potential;
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i
. (32)

Now let us take a

i = 1 (or take this as the unit to measure dimensional quantities) hereafter. So, the updated field is
solved as

�

R

(x+ 0̂) = U

†
0 (x)�R

(x)� dt

2
U

†
0 (x)�

i

h
U

i

(x)�
R

(x+ î)� U
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then, we can project out the produced particle amplitude as
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Then we can use the previous formulas with
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IV. NUMERICAL TEST WITH E

In the lattice discretized framework we should use the link variable defined as
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where we do not take the summation over µ. The massless two-component Dirac equation is represented as
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Now we approximate the di↵erentiation as follows:
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Now let us take a

i = 1 (or take this as the unit to measure dimensional quantities) hereafter. So, the updated field is
solved as
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(x+ î)� U

†
i

(x� î)�
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We keep the spatial part to be Hermitian because we find that the numerical simulation would be unstable otherwise.
Let us consider a solvable Schwinger problem as a numerical check. We put an electric field in z direction by the

gauge potential;
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III. GENERALIZATION

We need a more general setup to read the produced particle density and associated current for complicated time
evolutions. With spatial inhomogeneity or magnetic fields, the Bogoliubov mixing should be generalized as
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From these transformations we can deduce the corresponding changes of the creation and annihilation operators as
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We keep the spatial part to be Hermitian because we find that the numerical simulation would be unstable otherwise.
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gauge potential;

A

z = �E

!

�
tanh[!(t� t

f

/2)] + 1
 
, (34)

cf. Gelis-Kajantie-Lappi
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We chose the normalization as
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and the orthogonality relations are realized as
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It will turn out that these relations are important to make a projection to the positive- and negative-energy states.
Furthermore, it will be useful for the computation of the electric current to recognize:

u

R

(p;A)u†
R

(p;A) = (p
µ

� eA

µ

)�̄µ

, u

R̄

(p;A)u†
R̄

(p;A) = (p
µ

+ eA

µ

)�µ

, (13)

and

v

R

(p;A)v†
R

(p;A) = (p
µ

+ eA

µ

)�̄µ

, v

R̄

(p;A)v†
R̄

(p;A) = (p
µ

� eA

µ

)�µ

. (14)

We can also confirm that

u

†
R

(p
A

)�u
R

(p
A

) = �v

†
R̄

(p
A

)�v
R̄

(p
A

) = 2p
A

, v

†
R

(p�A

)�v
R

(p�A

) = �u

†
R̄

(p�A

)�u
R̄

(p�A

) = 2p�A

. (15)

II. EXPECTATION VALUE OF THE NUMBER OPERATOR

The field operator of the right-handed particle can be expanded as
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The field operator of the right-handed anti-particle can be expanded as
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As a first step, let us now assume a very simple problem of the Schwinger mechanism without mode mixing. Then
we can postulate that the wave-functions change through the interaction e↵ects as
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associated with a change in the vector potential: A ! A
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(after changing the integral variable from p to �p):
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0
p

= ↵

p

â
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where the normalization condition is |↵
p

|2 + |��p

|2 = 1 that guarantees the fermi statistics. Then, if we measure the
particle number operator of the future state with the initial state, the initial state is regarded as a state with non-zero
particles. We should pick up contributions non-vanishing with these creation and annihilation operators. That is,
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which leads to the electric charge density and the current density as
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â

p

�! â
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Use naive fermion with momentum integration  
only in one Brillouin zone (no doublers)

Chiral limit with Wilson fermion is very non-trivial  
(at the edge of the Aoki phase)


