

Particle Production and Currents from a Topological Domain

Kenji Fukushima The University of Tokyo

Based on work in progress with Pablo Morales

Talk Plan

A Key Question

An Approach

Technical Details

CME (and related phenomena) alive or dead?

CME (and related phenomena) alive or dead? Famous (and confusing...) plot

Dec. 16, 2014 @ Heidelberg

CME (and related phenomena) alive or dead?

Fine structure of correlations

CME (and related phenomena) alive or dead? Theory tells...

$$m{j} = N_c \sum_{f= ext{flavor}} rac{q_f^2 \mu_5}{2\pi^2} m{B}$$

Useful for a practical purpose?

CME (and related phenomena) alive or dead? Theory tells...

$$m{j} = N_c \sum_{f= ext{flavor}} rac{q_f^2 \mu_5}{2\pi^2} m{B}$$

Useful for a practical purpose?

NO... unfortunately...

Example

$$\bigwedge^{\mathcal{B}} \frac{\text{WZW action in } \chi \text{PT}}{\mathcal{L}_{\text{PV}}}$$

$$\mathcal{L}_{\text{P}} = \frac{N_{\text{c}} e^2 \operatorname{tr}(Q^2)}{8N_{\text{f}} \pi^2} \epsilon^{\mu\nu\rho\sigma} \left[\mathcal{A}_{\mu} (\partial_{\nu} \mathcal{A}_{\rho}) + \mathcal{A}_{\mu} \bar{F}_{\nu\rho} \right] \partial_{\sigma} \theta$$

$$q_0 \frac{dN_{\gamma}}{d^3 q} = \frac{q_z^2 + q_x^2}{2(2\pi)^3 q^2} \cdot \frac{25 \alpha_e \zeta(q)}{9\pi^3}$$
 Source for anisotropy

$$\zeta(q) \equiv \left| \int d^4x \, e^{-iq\cdot x} eB(x) \mu_5(x) \right|^2$$
 No concrete estimate...

Fukushima-Mameda (2010) cf. Basar-Kharzeev-Skokov

CME (and related phenomena) alive or dead? Short-lived magnetic field

Short-lived Magnetic Field

Color Glass Condensate (CGC)

$$\tau \lesssim 1/Q_s \sim 0.1 \mathrm{fm/c}$$

Color Glass + Plasma = Glasma

$$\tau \lesssim \tau_0 \sim 1 \mathrm{fm/c}$$

(s) Quark-Gluon Plasma

$$\tau \lesssim \tau_f \sim 10 \mathrm{fm/c}$$

Hadronization (quarks → hadrons)

Short-lived Magnetic Field

Color Glass Condensate (CGC)

$$\tau \lesssim 1/Q_s \sim 0.1 \mathrm{fm/c}$$

Color Glass + Plasma = Glasma

$$\tau \lesssim \tau_0 \sim 1 \mathrm{fm/c}$$

(s) Quark-Gluon Plasma

$$\tau \lesssim \tau_f \sim 10 \mathrm{fm/c}$$

Hadronization (quarks \rightarrow hadrons)

Initial State of HIC

Topological charge density ~ ${\cal E}$. ${\cal B} \sim Q_s^4$

Particle Production in Glasma

ĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĔŖŔĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖĸĸĿĔĬĬŖ

Gelis-Kajantie-Lappi (2005)

$$M_{\tau}(p,q) \equiv \int \frac{\tau dz d^2 \mathbf{x}_T}{\sqrt{\tau^2 + z^2}} \, \phi_{\mathbf{p}}^{\dagger}(\tau, \mathbf{x}) \gamma^0 \gamma^{\tau} \psi_{\mathbf{q}}(\tau, \mathbf{x})$$

Amplitude from anti-particles to particles

$$\frac{dN}{dy} = \int \frac{\mathrm{d}y_p \mathrm{d}^2 \mathbf{p}_T}{2(2\pi)^3} \frac{\mathrm{d}y_q \mathrm{d}^2 \mathbf{q}_T}{2(2\pi)^3} \delta(y - y_p) \left| M_\tau(p, q) \right|^2$$

$$\psi_{\mathbf{q}}(t \to -\infty, \mathbf{x}) = e^{iq \cdot x} v(q)$$

$$\phi_{\mathbf{p}}(x) = e^{-ip \cdot x} u(p)$$

Dominated at $\tau < 0.1$ fm/c

Everything happens at τ <0.1fm/c

Most Relevant Picture

Pulsed magnetic field ~ a few GeV $< 0.1 \,\mathrm{fm/c}$ Glasma ~ 1-2 GeV Dominated at short-time scale < 0.1 fm/c

Most Relevant Picture

Pulsed magnetic field ~ a few GeV $< 0.1 \,\mathrm{fm/c}$ Glasma ~ 1-2 GeV No need for μ_5 (case closed) $< 0.1 \, \text{fm/c}$

An Approach

Particle (current) production with strong fields
Electric Fields

Pair production when energy conservation satisfied (Schwinger Mechanism)

An Approach

Particle (current) production with strong fields Electromagnetic Fields

$$oldsymbol{E} = -oldsymbol{
abla}\phi - \partial_t oldsymbol{A} \qquad oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$$

Net particle production for R and L fermions "Carriers" for Hall and CME currents

Analytical Derivation

Schwinger process in K'

$$\Gamma = \frac{q^2 E_z' B_z'}{4\pi^2} \coth\left(\frac{B_z'}{E_z'}\pi\right) \exp\left(-\frac{m^2 \pi}{|qE_z'|}\right)$$

Current generation rate

$$\partial_t j_y \simeq \frac{q^2 B_y}{2\pi^2} \frac{g \mathcal{E}_z \mathcal{B}_z^2}{\mathcal{B}_z^2 + \mathcal{E}_z^2} \coth\left(\frac{\mathcal{B}_z}{\mathcal{E}_z}\pi\right) \exp\left(-\frac{2m^2\pi}{|g\mathcal{E}_z|}\right)$$

Fukushima-Kharzeev--Warringa (2010)

Schematic Picture

Technical Details

Anomalous particle production on the lattice

Nielsen-Ninomiya Theorem
Chiral Symmetry → Doublers → No Anomaly
CME needs Chiral + Anomaly

Schwinger pair production is insufficient Net particle production is indispensable

"Zero" when it should be zero

Should be checked in an ideal (test) setup

Technical Details

Anomalous particle production on the lattice

Produced Particle Density

Hall current in the x-direction

CME current in the y-direction

Dec. 16, 2014 @ Heidelberg

Ohm's current in the z-direction

Implication

- ട്ടുക്കും ത്രിക്കുറ്റെ ത്രിക്കുറ്റെ ത്രിക്കുറി ത്രിക്കുറി ത്രിക്കുറി ത്രിക്കുറി വരിക്കുറി വ Reasonable estimate \Box Chiral chemical potential $\sim Q_s$ □ Particle production → Simultaneous current generation Apply the formulation for Glasma (in progress) □ Particle production in an *expanding system* □ No need for sudden turn-off □ Singularity at the light cone (cumbersome...) Observable?
- - □ Not currents but particle distribution in experiments
 - □ Distribution in momentum space not gauge invariant
 - □ Easy to introduce a baryon chemical potential (BES)

Weyl Fermions

ീരച്ചിം, തിരീരച്ചിം, തിരീരച്ചിം, തിരീര തിരീരച്ചിം, തിരീരച്ചിം, തിരീരച്ചിം, തിരീരച്ചിം, തിരീരച്ചിം, തി

Two-component chiral fermions

$$\left(i\sigma^{\mu}\partial_{\mu} - e\sigma^{\mu}A_{\mu}\right)\phi_{R} = 0$$

Free solution (with constant vector potentials) $e^{i\theta(\mathbf{p}_A)} = \frac{p_A^x + ip_A^y}{\sqrt{(p_A^x)^2 + (p_A^y)^2}}$

$$e^{i\theta(\mathbf{p}_A)} = \frac{p_A^x + ip_A^y}{\sqrt{(p_A^x)^2 + (p_A^y)^2}}$$

$$u_R(\mathbf{p}; \mathbf{A}) = u_R(\mathbf{p}_A = \mathbf{p} - e\mathbf{A}) = \begin{pmatrix} \sqrt{|\mathbf{p}_A| + p_A^z} \\ e^{i\theta(\mathbf{p}_A)} \sqrt{|\mathbf{p}_A| - p_A^z} \end{pmatrix}$$

Very singular at zero momentum — Berry's phase

Chiral anomaly from monopole singularity

Son-Yamamoto / Stephanov-Yin (2010)

Anti-Particles

programme programme and the second companies to the second companies to the second companies to the second comp

$$\left(-i\bar{\sigma}^{\mu}\partial_{\mu} - e\bar{\sigma}^{\mu}A_{\mu}\right)(-i)\sigma^{2}\phi_{R}^{*} = 0$$

$$u_{\bar{R}}(\mathbf{p}; \mathbf{A}) = u_{R}(-\mathbf{p}_{-A} = -\mathbf{p} - e\mathbf{A}) = \begin{pmatrix} \sqrt{|\mathbf{p}_{-A}| - p_{-A}^{z}} \\ -e^{i\theta(\mathbf{p}_{-A})} \sqrt{|\mathbf{p}_{-A}| + p_{-A}^{z}} \end{pmatrix}$$

Negative-energy components

$$v_R(\boldsymbol{p}; \boldsymbol{A}) = i\sigma^2 u_{\bar{R}}^*(\boldsymbol{p}; \boldsymbol{A}) = -e^{-i\theta(\boldsymbol{p}_{-A})} u_R(\boldsymbol{p}_{-A})$$

$$v_{\bar{R}}(\boldsymbol{p};\boldsymbol{A}) = -i\sigma^2 u_R^*(\boldsymbol{p}) = -e^{-i\theta(\boldsymbol{p}_A)} u_{\bar{R}}(\boldsymbol{p}_A)$$

Bogoliubov Transformation

$$\hat{\phi}_R(x) = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \left(\hat{a}_{\boldsymbol{p}} \frac{u_R(\boldsymbol{p}_A) e^{-i|\boldsymbol{p}_A|x^0 + i\boldsymbol{p}\cdot x}}{\sqrt{2|\boldsymbol{p}_A|}} + \hat{b}_{\boldsymbol{p}}^{\dagger} \frac{v_R(\boldsymbol{p}_{-A}) e^{i|\boldsymbol{p}_{-A}|x^0 - i\boldsymbol{p}\cdot x}}{\sqrt{2|\boldsymbol{p}_{-A}|}} \right)$$

No Momentum Mixture (Schwinger Problem)

$$\frac{u_{R}(\boldsymbol{p}_{A})e^{-i|\boldsymbol{p}_{A}|x^{0}+i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{A}|}} \longrightarrow \alpha_{\boldsymbol{p}} \frac{u_{R}(\boldsymbol{p}_{A'})e^{-i|\boldsymbol{p}_{A'}|x^{0}+i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{A'}|}} - \beta_{-\boldsymbol{p}}^{*} \frac{v_{R}(-\boldsymbol{p}_{A'})e^{i|\boldsymbol{p}_{A'}|x^{0}+i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{A'}|}}$$

$$\frac{v_{R}(\boldsymbol{p}_{-A})e^{i|\boldsymbol{p}_{-A}|x^{0}-i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A'}|}} \longrightarrow \alpha_{\boldsymbol{p}}^{*} \frac{v_{R}(\boldsymbol{p}_{-A'})e^{i|\boldsymbol{p}_{-A'}|x^{0}-i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A'}|}} + \beta_{-\boldsymbol{p}} \frac{u_{R}(-\boldsymbol{p}_{-A'})e^{-i|\boldsymbol{p}_{-A'}|x^{0}-i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A'}|}}$$

Positive- and Negative-energy Coefficients

$$\hat{a}_{\boldsymbol{p}} \longrightarrow \hat{a}'_{\boldsymbol{p}} = \alpha_{\boldsymbol{p}} \hat{a}_{\boldsymbol{p}} + \beta_{\boldsymbol{p}} \hat{b}^{\dagger}_{-\boldsymbol{p}}, \qquad \hat{b}^{\dagger}_{\boldsymbol{p}} \longrightarrow \hat{b}'^{\dagger}_{\boldsymbol{p}} = \alpha^{*}_{\boldsymbol{p}} \hat{b}^{\dagger}_{\boldsymbol{p}} - \beta^{*}_{\boldsymbol{p}} \hat{a}_{-\boldsymbol{p}}$$

Amplitude for Particle Production

Generalization

$$\frac{u_{R}(\boldsymbol{p}_{A})e^{-i|\boldsymbol{p}_{A}|x^{0}+i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{A}|}} \longrightarrow \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} \left[\alpha_{\boldsymbol{q},\boldsymbol{p}} \frac{u_{R}(\boldsymbol{q}_{A'})e^{-i|\boldsymbol{q}_{A'}|x^{0}+i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} - \beta_{-\boldsymbol{q},-\boldsymbol{p}}^{*} \frac{v_{R}(-\boldsymbol{q}_{A'})e^{i|\boldsymbol{q}_{A'}|x^{0}+i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}}\right],$$

$$\frac{v_{R}(\boldsymbol{p}_{-A})e^{i|\boldsymbol{p}_{-A}|x^{0}-i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A}|}} \longrightarrow \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} \left[\alpha_{\boldsymbol{q},\boldsymbol{p}}^{*} \frac{v_{R}(\boldsymbol{q}_{-A'})e^{i|\boldsymbol{q}_{-A'}|x^{0}-i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{-A'}|}} + \beta_{-\boldsymbol{q},-\boldsymbol{p}} \frac{u_{R}(-\boldsymbol{q}_{-A'})e^{-i|\boldsymbol{q}_{-A'}|x^{0}-i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{-A'}|}}\right]$$

$$f_{\boldsymbol{p}}(x^0 \sim -\infty, \boldsymbol{x}) \longrightarrow \frac{v_R(\boldsymbol{p}_{-A})e^{i|\boldsymbol{p}_{-A}|x^0 - i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A}|}}$$

$$\beta_{\boldsymbol{q},\boldsymbol{p}} = \int d^3\boldsymbol{x} \, \frac{u_R^{\dagger}(\boldsymbol{q}_{A'})e^{i|\boldsymbol{q}_{A'}|x^0 + i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} \, f_{-\boldsymbol{p}}(x^0,\boldsymbol{x})$$

$$|\beta_{\mathbf{p}}|^2 = \int \frac{d^3\mathbf{q}}{(2\pi)^3} |\beta_{\mathbf{p},\mathbf{q}}|^2$$

cf. Gelis-Kajantie-Lappi

Currents

$$J^{\mu} = eV \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{|\beta_{\mathbf{p}}|^{2}}{2|\mathbf{p}_{A'}|} u_{R}^{\dagger}(\mathbf{p}_{A'}) \sigma^{\mu} u_{R}(\mathbf{p}_{A'}) - eV \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \frac{|\bar{\beta}_{\mathbf{p}}|^{2}}{2|\mathbf{p}_{-A'}|} u_{\bar{R}}^{\dagger}(\mathbf{p}_{-A'}) \bar{\sigma}^{\mu} u_{\bar{R}}(\mathbf{p}_{-A'})$$

$$J^{0}/eV = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} (|\beta_{\mathbf{p}}|^{2} - |\bar{\beta}_{\mathbf{p}}|^{2}) ,$$

$$J^{0}/eV = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} (|\beta_{\mathbf{p}}|^{2} - |\bar{\beta}_{\mathbf{p}}|^{2}), \qquad \mathbf{J}/eV = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} (\frac{\mathbf{p}_{A'}}{|\mathbf{p}_{A'}|} |\beta_{\mathbf{p}}|^{2} - \frac{\mathbf{p}_{-A'}}{|\mathbf{p}_{-A'}|} |\bar{\beta}_{\mathbf{p}}|^{2})$$

Use naive fermion with momentum integration only in one Brillouin zone (no doublers)

Chiral limit with Wilson fermion is very non-trivial (at the edge of the Aoki phase)