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Several feature of NN interactions at the LHC relevant for pA and AA 

Fluctuations of overall strength of NN interaction

A factor of four difference of the  transverse area scales for soft and hard  NN interaction

Other fluctuations - gluon density in nucleon, nuclei,  LT shadowing effects --
 can discuss only  during the question part.

two seem to be most important:

✱

✱
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High energy projectile stays in a  frozen configuration distances lcoh =cΔt

�t ⇠ 1/�E ⇠ 2ph
m2

int �m2
h

At LHC for                                       lcoh ~ 107 fm>> 2RA>> 2rNm2
int �m2

h ⇠ 1GeV2

Strength of interaction of white small  system is proportional to the area occupies by 
color.

QCD factorization theorem for  the interaction of small size color singlet wave package of quarks and gluons. 

Fluctuations of overall strength of high energy NN interaction

Hence system of quarks and gluons passes through the nucleus interacting 
essentially with the same strength but changes from one event to another 
different strength



Constructive  way to account for coherence of the high-energy dynamics is 
Fluctuations of interaction cross section formalism. 

Classical low energy picture of 
inelastic h A collisions 

implemented in Glauber model  
based Monte Carlos 

wounded nucleons

spectator nucleons
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+
High energy picture of inelastic 
h A collisions consistent with 

the Gribov - Glauber model but 
more microspcopic  

Frozen configuration - same strength of interaction with 
different nucleons along the path essentially semiclassical  picture!!!



Convenient quantity - P(σ)  -probability that nucleon interacts with cross section σ with the target.   

dσ(pp!X+p)
dt

dσ(pp!p+p)
dt

| t = 0
=

�
(� � �tot)2P (�)d�

�2
tot

⇥ ⇥� variance
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∫P(σ)d σ= 1, ∫ σ P(σ)d σ=σtot, 

Pumplin  &Miettinen

∫ (σ - σtot)3 P(σ)d σ= 0, Baym et al from pD diffraction

P (�)|�!0 / �nq�2 Baym et al 1993 -  analog 
of QCD counting rules

+ additional consideration that for a many particle system fluctuations near average value should be 
Gaussian 

model and the Monte Carlo calculations which take into account finite radius of the NN

interaction neglected in the optic model.

IV. EFFECTS OF FLUCTUATIONS IN THE MONTE CARLO MODEL

An additional source of event-by-event fluctuations of the number of wounded nucleons

comes from the fluctuations in the number of nucleons at a given impact parameter. These

fluctuations are present already on the level of the Glauber model [8]. These fluctuations

decrease with increase of σtot(NN) due to an increase of the overall number of interacting

nucleons, N , at a given impact parameter. In the case when no fluctuations of σ are present,

we have:

〈N(σinel)〉 = 〈N〉
σinel

〈σinel〉
. (14)

In this case we can write
〈

N(σinel)
2
〉

= 〈N〉2 (1 + ωρ) , (15)

where ωρ is the quantity calculated for dispersion in the case of no color fluctuations. The

dependence of ωρ on σinel(NN) is presented in Fig. 1 for b = 0 and b = 4. In the calculation

we use the event generator [8]. The event generator includes short-range correlations between

nucleons, however this effect leads to a very small correction for the discussed quantity.

When both fluctuations are included average N does not change. Hence the dispersion

of the distribution over N including both effects can be calculated as follows:

〈

N2
〉

=
∫

dσinelP (σinel) 〈N〉2
(

σinel

〈σinel〉

)2

(1 + ωρ) . (16)

Now we can calculate the total dispersion. The first term in (1 + ωρ) gives simply ωσ. The

second term takes into account the dependence of ωρ on σinel:

ωtot = ωσ +
∫

dσinelP (σinel)

(

σinel

〈σinel〉

)2

ωρ . (17)

As a result the overall dispersion is somewhat smaller that ωσ+ωρ(σtot) since the the integral

in the second term is dominated by σ > σtot. In order to perform numerical analysis we

follow [10], and take the probability distribution for σtot as [16]:

Ph(σtot) = r
σtot

σtot + σ0
exp{−

σtot/σ0 − 1

Ω2
} , (18)
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N

Test:  calculation of coherent diffraction off nuclei: π A→XA, p A→XA  through Ph(σ)
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FIG. 1: The cross section distribution P (σ, s) at different energies: the solid curve corresponds to
√

s = 9 TeV (LHC); the dashed curve corresponds to
√

s = 1.8 TeV (Tevatron); the dot-dashed

curve corresponds to
√

s = 200 GeV (RHIC).

IV. RESULTS AND DISCUSSION

Using Eqs. (15) and (18), we calculate the total, elastic and diffractive dissociation cross

sections for proton-208Pb scattering as a function of
√

s. The result is given in Fig. 2.

In our numerical analysis, we used the following parameterization of the nucleon distri-

bution ρA("r)

ρA("r) =
ρ0

1 + exp ((r − c)/a)
, (22)

where c = RA − (π a)2/(3 RA) with RA = 1.145 A1/3 fm and a = 0.545 fm; the constant ρ0

is chosen to provide the normalization of ρA("r) to unity.

One sees from Fig. 2 that cross section fluctuations decrease the total and elastic cross
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PN(σ)

Extrapolation of Guzey  & MS  before the LHC data

!� ⇠ 0.1

consistent with LHC data which are still not too accurate
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it must fall rapidly to zero. For a Gaussian falloff, ~Iic(r~)~ =exp( —r~~/r~)r~~/r4, Fqs. (7) and (10) imply that
M-=0.5. This estimate must be taken with caution. A major contribution to M. comes from projectile LC s for which
the dipolar form overestimates the cross section. Furthermore, projectiles in LC s will collide many times, but energy
degradation limits the maximum number of collisions producing ET. Therefore one should apply a smaller eA'ective co

for transverse energy spectra.
In nuclear collisions the number of binary NN collisions is given by Glauber theory

(N) =(cr J)I d rd r'ply(r)p~(r')8 (b+s —s') =cr„T8(s—b)T~(s)d s. (1 1)

For simplicity we consider in the following only central collisions and small projectiles, so that Rg&(Rg., the general
case is a simple extension. The variance is given in the Glauber limit by

(N ) =(N)+(cr~)l(cr;J)1 d sd s'dzdz'dz"dz'"pIi (s, z;s', z')pg (s,z";s',z"')

+(a~cJJ)1J d sdz dz" dz"'p8(s, z)p~ (s,z";s,z"')+(a~o; ~)1J d s dz dz'dz"p~ ( sz;s, z')p~(s, z") . (12)

It is understood that i &i' and j&j' in Eq. (12). Equation
(12) may also be derived from Glauber theory by apply-
ing Abramovskii-Gribov, Kancheli cutting rules [15] to
calculate the double inclusive cross section [11].
The four terms in Eq. (12) correspond to (1) the same

projectile nucleon colliding with the same target nucleon,
(2) two different projectile nucleons i and i' colliding with
two different target nucleons j and j', (3) the same pro-
jectile i colliding with two different target nucleons j andj', and finally (4) a target nucleon j being hit by the two
different projectile nucleons i and i'. Note that higher
moments (N"), n~ 3, will depend on the simultaneous
fluctuations in the projectile and target nucleons.
The second term in Eq. (12) is straightforward to

evaluate when g«RII, R~, in which case we can approxi-
mate p~C&(r) by 6 ' (r). It is given by =B N~&—BNzq —BNl, qN'„a+BN„z, where N~z =oT~(0) is the
average number of collisions a projectile nucleon en-
counters, as given in pA collisions, Eq. (3), and N~a
=B 'o fp a(s, z) pa( sz')d sdzdz'. For a spherical pro-
jectile nucleus of radius RB, Np~= —, oppR&cY. The fac-
tor 2 instead of 2 as for a spherical target nucleus
(N„~ =2c7p~R~) follows from the impact parameter
averaging necessary for the projectile nucleus.
The third integral, evaluated analogously to the pA

case, is =BN„~(N„~—a)(o;.~cr~j')I/a . The fourth con-
tains the two-body density distribution of nucleus B and
gives a contribution =BN„&(N„s—P)(o;Ja';J')I/cY' where
P=a is the correlation parameter for nucleus B, defined
analogously to Eq. (5). These derivations assume
«RII, which implies N„a »P. For small projectile nuclei
this approximation is not valid; rather N„s P so that
the fourth term vanishes.
Collecting terms we obtain

co c04 f can+ 2—a—P+ (Nz~ +N&ii —a—P)co . (13)

We can interpret the co term as the correlation coming
from each projectile nucleon making on average N„~ —e
hits after the first, and a target nucleon being hit on aver-
age N~a —p subsequent times by a projectile nucleon.
Equation (13) generalizes the pA result of Eq. (6) to nu-

OJ(7 = 0.5
ll

s
s 3 = O. I

u)~ =O.O

I

100
I

150
I

200 250
A

FIG. 1. Fluctuations m —md„.f for central collisions of S on
different targets calculated with Eq. (l3) for various values of
cu . The experimental values (dots) are taken from Ref. [12].

t clear collisions by adding the correlations from target nu-
cleons being hit multiple times.
With can=32 mb and pp=0. 16 fm, and a heavy tar-

get, we have NI)p —2(7ppR& —12M . In CERN and
Brookhaven experiments with ' 0 or S projectiles,
Nl, z= 2 c7ppR&=2-3. We show in Fig. 1, m —codef given
by Eq. (13), for S, with various values of cu, taking
coo =0.5, and a =P =0.3, as discussed above. We see that
the cross-section fluctuations are able to account for the
large co's found experimentally with m —0.2, a value
consistent with that extracted from forward diAractive
scattering amplitudes, Eq. (8). Note that for small tar-
gets (e.g. , Al) the assumption Rs«R~ overestimates
N„~ and Nps so that Eq. (13) overestimates the lluctua-
tions. Numerical studies [11] show that the corrected
values also reproduce the data for small 2 with co =0.2.
The eAective co in transverse energy fluctuations should
be somewhat smaller than that measured in diflractive
scattering due to energy degradation and the fact that at
CERN energies the configurations of hadrons are not
completely frozen during the collision. Equation (13) de-
scribes the ' 0 data [16] as well with similar values for

2948

Dispersion of ET distribution in central 32S A 
collisions at SPS at E/A =200 GeV

Qualitative expectation: CF increase fluctuations of a number of  observables in pA and AB 
collisions.

! � !def = !0 + 2� ↵� � + (NpB +NpA � ↵� �)!�

First example: study of dispersion of ET distribution in AB collisions as superposition of 
emission from binary collisions with variance ω0:

nucl. deform. nucl. corr.: α~β~ 0.3

H. Heiselberg, G. Baym, B. Blattel, L. L. 
Frankfurt, "' and M. Strikman PRL 1991



Large fluctuations in the number of wounded nucleons at fixed impact parameter 

Simple illustration - two component model ≣ quasieikonal approximation:

number of wounded nucleons at 
small b differs by a factor of 2 !!!LHC

Scattering at b=4 fm with probability ~ 1/2 generates the same number of 
wounded nucleons as an average collision at b=0. Smearing of the centrality

8

�1 = 70mb, �2 = 130mb

�1,2 = (1±
p
!
�

) · �
tot



the value of !� and that fluctuations result in the substantially larger tail of the distribution at

large N .
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FIG. 1: The probabilities PN of having N = Ncoll wounded nucleons, averaged over the global impact

parameter b, as a function of Ncoll for the Glauber model (!� = 0) and in the color fluctuation model with

!� = 0.1 (our base value used in the current analysis) and !� = 0.2. The inset is in log scale.

So far we performed calculations based on the parametrizations suggested in [8]. It assumes the

Gaussian shape of the large-� tail of P (�). However the study [8] was testing fluctuations near its

average value, �tot. In principle the tail of the parton distribution in the impact parameter space

is expected to behave as exp(��⇢) so one may expect presence of a tail in P (�) / exp(�c�). To

explore sensitivity to the presence of such a tail, we introduced another model of

P (�) = a� exp(�c |� � �0|) , (7)

with parameters fixed to reproduce the same total cross section and dispersion as in the basic

model. We find that the distribution over Ncoll practically does not change – see Fig. 2.

This confirms our conclusion [2] based on the comparison of the model based on Eq. (2) and

the two-component model. Still changing the behavior at small � one can generate a very di↵erent

shape for the same variance, see [11]. Hence it would be interesting to explore this issue further

as the sensitivity to the tail for the central collisions should grow since at the LHC in central pA

collisions, one typically selects Ncoll ⇠ 14.

As we already mentioned in the Introduction, the existing data on soft hadron production can be

fitted in the models with and without color fluctuations [1]. Hence to probe e↵ects of fluctuations
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Fluctuations lead to broadening of the distribution over Ncoll - number of active 
nucleons as compared to Glauber model -  reported by ATLAS (Cole’s talk) and 
ALICE.    Large Ncoll select configurations with larger σ

Probability of interaction with Ncoll nucleons 
integrated over impact parameter  b. 

MC calculation of Alvioli and MS Phys.Lett. 13. Accurate account of profile functions on 
NN interactions and short-range nucleon correlations in nuclei

352 M. Alvioli, M. Strikman / Physics Letters B 722 (2013) 347–354

Fig. 4. Effect of fluctuations on the event-by-event fluctuating values of σtot , for RHIC and LHC energies.

Fig. 5. Fraction of inelastic cross section plotted as a distribution over impact parameter as defined in Eq. (23). Horizontal lines at 0.2, 0.4 and 0.6 correspond to the
experimental definition of 20%, 40% and 60% centrality, respectively.

of the impact parameter in the collisions. A model independent
treatment of this problem would require a study of p A collisions
for different nuclei. Still the central multiplicity appears to be a
good observable even in the presence of the color fluctuations. In-
deed in the soft interaction dynamics the hadron multiplicity for
central rapidities, yc.m. ∼ 0, does not depend on σ hN

tot , as it is de-
termined by the density of partons in a single Pomeron ladder.
Hence the hadron multiplicity for yc.m. ∼ 0 should be about the
same for different fluctuations. Also the first studies of the p A
collisions at the LHC indicate that to a good approximation the
hadron multiplicity for pt ! 1 GeV is proportional to the number
of wounded nucleons calculated in the Glauber model [17]. Hence
we expect that selecting events with the yc.m. ∼ 0 hadron mul-
tiplicities: M/〈M〉 ! 2.5 should select configurations in the pro-
jectile significantly larger than average ones (cf. Fig. 4 right) with
significantly different parton distributions.

Correspondingly, a trigger for configurations of smaller than av-
erage size would lead to a more narrow distribution in N . One
such possibility is to select as a trigger a hard process in which
a parton of the proton with xp > 0.6 is involved. One may ex-
pect that in this case one selects quark–gluon configurations with-
out qq̄ pairs and significantly screened gluon field, leading to σin
significantly smaller than average and hence a strong suppres-
sion of large N tail [18]. Such measurements appear to be feasi-
ble using the data collected in the 2013 p A run at the LHC in
which a significant number of events with large xp should have
been collected. Since this kinematics (for the current LHC detec-
tors) corresponds to very large pT ’s of the jets, one expects that
for the inclusive cross section impulse approximation would work
very well. Hence it would be possible to avoid issues of the fi-
nal/initial state interactions and nuclear shadowing in interpreting
these data.

A convenient quantity to study these effects experimentally
would be a measurement of the distribution over xp for different

classes of hard collisions at fixed xA normalized to the distribu-
tion in the inclusive p A scattering. A large effect is expected for
the central collisions where the hard cross section should be sup-
pressed for large xp ! 0.2–0.3 and enhanced for x " 0.05.

Note that such a measurement among other things would allow
to test in an unambiguous way the explanation of the EMC effect
at large x as due to the dominance of the smaller than average
size configurations in nucleon at x ! 0.6; for a recent review see
Ref. [19].

We also investigated the impact of fluctuations of the definition
of centrality classes. We followed the experimental definition, in
which the centrality is proportional to the fraction of total inelastic
cross section provided by a given type of events. We can extract
from the MC results of Fig. 1 the probability Q N of having at least
N inelastic interactions, irrespective of the impact parameter b (cf.
Eq. (7)):

Q N =
∑A

M=N

∫
db P M(b)

∑A
M=1

∫
db P M(b)

, (23)

in such a way that Q N=1 = 1 by definition. This allows to es-
timate the fraction of σ h A

in arising from a given interval in the
number of wounded nucleons. Then, one can choose a central-
ity class and select the interval in number of wounded nucleons
which contributes to that class. In Fig. 5, we have chosen the
classes of the 20% most central events by requiring it to provide
20% of the total inelastic cross section and, similarly, we have sin-
gled out the 20%–40% and 40%–60% centrality classes, and the
40% most peripheral events as the last class. We use the num-
ber of the wounded nucleons corresponding to (closer to) these
cuts as limits in N entering in Eq. (24), for the calculation of the
curves in Fig. 6. In Fig. 6 we show, for the selected classes, the
distribution of events as a function of impact parameter by plot-
ting
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There exist a number of dynamical mechanisms of the  fluctuations of the strength of interaction 
of a fast nucleon/pion: fluctuations of the size, number of valence constituents, orientations

N = 3q + 3qg + 3q+ π + ...

● ●
● vs

●
● ●

rtr rtr

pN
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Studing effects of CFs in pA aims at 

vs

vs

Localization of color certainly plays a role - so we refer to the fluctuations generically as color fluctuations.

(ii)  Better understanding of the dynamics of pA and AA collisions
(i)  Mapping 3-dimensional global structure  of the nucleon

may dominate 
at large x
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Natural expectation  is that there is a correlation between configuration of hard partons 
in the hadron  and strength of interaction of the hadron:

π (ρ)-meson decay constants (fπ,fρare determined configuration with essentially no 
gluon field and of small transverse size 

Operational success of quark counting rules -- minimal Fock space configurations 
dominate at large x. Quarks in these configurations have to be close enough - otherwise 
generation of  Weizsäcker -Williams  gluons

IDEA 
Use the hard trigger (dijet) to determine x of the parton in the proton (xp)  
and low pt hadron activity  to measure overall strength of interaction σeff  of 
configuration in the proton with given x    FS83

Expectation: large x (x≳ 0.5) correspond  to smaller σ → drop of # of wounded nucleons, central multiplicity 
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To calculate the expected CF effects accurately it is necessary to take into 
account grossly different geometry of minimum bias and hard collisions

Data - ATLAS & CMS on correlation of jet production and activity in forward 
rapidities - - details are in B.Cole & G. Roland  talks tomorrow:

Key relevant observations: 

pQCD works fine for inclusive production of jets

The jet rates for different centrality classes do not 
match geometric expectations. Discrepancy scales 
with x of the parton of the proton and maximal for 
large xp
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Figure 5: RCP for R = 0.4 jets in
p

sNN = 5.02 TeV p+Pb collisions. Each panel shows the RCP in
jets in multiple rapidity bins at a fixed centrality interval. The top row show the RCP for 0-10%/60-90%
and the bottom row show the RCP for 30-40%/60-90%. In the left column, the RCP is plotted against jet
pT. In the right column, the RCP is plotted against the quantity pT cosh(y⇤) where y⇤ is the midpoint of
the rapidity bin. Error bars on data points represent statistical uncertainties, boxes represent systematic
uncertainties, and the shaded box on the RCP = 1 dotted line indicates the systematic uncertainty on Rcoll
for that centrality interval.
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and the bottom row show the RCP for 30-40%/60-90%. In the left column, the RCP is plotted against jet
pT. In the right column, the RCP is plotted against the quantity pT cosh(y⇤) where y⇤ is the midpoint of
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uncertainties, and the shaded box on the RCP = 1 dotted line indicates the systematic uncertainty on Rcoll
for that centrality interval.

10

✔

✔



Central pp 
collisions 

Small b ➠ large overlap of x>10-3partons

b b

transverse viewPeripheral 
pp collisions 

Two scale transverse dynamics of pp interactions at LHC

Using realistic transverse parton distributions is critical for genuine 
understanding of pp and pA inelastic interactions

13

Different intensity of interactions for small and large impact parameters 

b
N

N

ρ1→ ρ2→

→
jet

jet
fj(x1, ⇥�1) fj0(x2, ⇥�2)

⇥�1 +⇥b� ⇥�2 / 1/ptjet ⇠ 0

Geometry of pp collision with production of dijet  in the transverse plane 

Diagonal Generalized 
Parton distribution - 

For hard collision

⇤h /
Z

d2bd2⇥1d
2⇥2�(⇥1 + b� ⇥2)f1(x1, ⇥1)f2(x2, ⇥2)⇤2!2

=

Z
d2�1d

2�2f1(x1, �1)f2(x2, �2)⇥2!2 = f1(x1)f2(x2)�2!2

For inclusive cross section at high virtuality transverse structure does not 
matter - convolution of parton densities

However critical for understanding global structure of inelastic events 
�

6

LF, MS, Weiss 03

Large probability of multiparton, 
soft/hard interactions
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Area in which most of hard interactions occurs is a factor of 
four  smaller than that of minimum bias interactions

P2(b) =
m2

g
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✓
mgb
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◆3

K3(mgb)Weak dependence of                                                    probability of hard 
interaction occurs at given b on rapidity and pT of the dijet m

2
g(x ⇠ 10�2) ⇡ 1GeV2
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  M.Alvioli, L.Frankfurt, V.Guzey and M.Strikman,
  ``Revealing nucleon and nucleus flickering 

in pA collisions at the LHC,'  arXiv:1402.2868
DISTRIBUTION OVER THE NUMBER OF COLLISIONS 
FOR PROCESSES WITH A HARD TRIGGER

If the radius of strong interaction is small and hard interactions have the same distribution over 
impact parameters as soft interactions multiplicity of hard events: 
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FIG. 2: Comparison of the distributions over N = Ncoll in the color fluctuation models with !� = 0.1 and

di↵erent shapes of distribution over � – Eqs. (2) and 7.

it appears promising to look for their e↵ects in the processes with a hard trigger which correspond

to somewhat di↵erent geometry than the minimal bias inelastic collisions.

III. DISTRIBUTION OVER THE NUMBER OF COLLISIONS FOR PROCESSES WITH

A HARD TRIGGER

One of the typical setups for pA collisions is the study of soft characteristics of the events which

are related to the number of wounded nucleons for events with a hard subprocess (dijet, Z-boson,

. . .). In the case of inclusive production, the cross section is given by the QCD factorization theorem.

Putting an additional requirement on the final state break down the closure approximation and

hence requires special treatment. The main aim here is to get a deeper insight into dynamics of

pA interactions and in particular to probe the flickering phenomenon which we discussed in the

Introduction.

On average, in the geometric model for hard processes in the kinematics, where nuclear

shadowing can be neglected (i.e., for x � 0.01 and even smaller x for large virtualities), the

multiplicity of the events with a hard trigger (HT), which we will denote as MultpA(HT ), is

MultpA(HT ) = �pA(HT + X)/�pA(in). Using Eq. (6) one finds that a simple relation for the

multiplicities of HT events in NN and minimal bias pA collisions holds:

MultpA(HT ) = hNcolliMultpN (HT ) . (8)

8

Here we will consider the rates of hard collisions as a function of Ncoll with the additional

factor of Ncoll in the denominator in order to focus on the deviation from the naive optical model

expectation [19] that Eq. (8) holds for fixed values of Ncoll:

RHT (Ncoll) ⌘
MultpA(HT )

MultpN (HT )Ncoll
= 1 . (9)

Let us denote as b and bj the transverse center of mass of the projectile proton and the target

nucleons relative to the center of the nucleus, respectively. We also denote as ⇢ the transverse

distance of the parton of the projectile from point b. The transverse distance between the point of

hard collision and the distance to the transverse c.m. of nucleon j of the nucleus is

⇢j = b+ ⇢� bj . (10)

ρ
i

b

θ
x

ρ

bi

i
θ

FIG. 3: Sketch of the transverse geometry of collisions.

The generalized gluon distribution in the nucleon can be parametrized as gN (x,Q2, b) =

gN (x,Q2)Fg(⇢), where Fg(⇢) is the normalized distribution of gluons in the nucleon transverse

plane (we do not write here explicitly the dependence of gN (x,Q2, b) on x and Q2);
R
d2bFg(⇢) = 1.

This parametrization is reasonable since the distribution over ⇢ is practically independent on Q2. In

our numerical calculations, we take Fg(⇢) from the analysis of the data on elastic photoproduction

of J/ meson [15–17]. For x ⇠ 0.01:

Fg(b) = (⇡B2)�1 exp
⇥
�b2/B2

⇤
, (11)

where B = 0.5 fm. Note that sensitivity to the exact value of B is rather insignificant as long as

it stays small enough.

The cross section di↵erential in the impact parameter is given by the convolution of the gener-

alized gluon distribution of the colliding particles:

d�HT (NA)

d2b
= �HT (NN)

Z
d2⇢

j=AY

j=1

[d2⇢j ]Fg(⇢)⇥
j=AX

j=1

Fg(⇢j) , (12)

9

Consider multiplicity of hard events
as a function of Ncoll

Accuracy? Significant corrections due to presence of two transverse scale.
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lead to hard collisions. As a result, RHT becomes smaller than unity, while in the model without

fluctuations, RHT stays very close to unity up to very large Ncoll. We checked that results of the

calculation are not sensitive to the presence of the correlations between nucleons.

As a result, the color fluctuation model predicts a higher rate of events with a hard trigger

starting at somewhat larger Ncoll than in minimum bias events (cf. Figs. 1 and 5). Hence our
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FIG. 4: Ratio RHT (Eq. (9)) of the rates of hard collisions in the Glauber model and color fluctuation

model and in the optical model as a function of N = Ncoll.

analysis demonstrates that color fluctuations lead to two e↵ects for large Ncoll for the bulk hard

observables: (i) larger probability of the collisions with Ncoll � 12 and (ii) reduced probability of

the hard subprocesses for the same Ncoll range. Further modeling is necessary to determine the

optimal strategy to see these e↵ects in the bulk data sample. Using the information about xp of

parton in the proton undergoing the hard interaction maybe an easier way forward.

IV. HOW TO OBSERVE THE EFFECTS OF FLICKERING IN pA COLLISIONS

In this section we propose strategies for using processes involving both soft and hard interactions

to obtain the definitive evidence for the presence of the flickering phenomenon determining the

correlation between xp of the parton in the proton involved in the hard collision and the overall

interaction strength of the configuration containing this parton. The challenge for all such studies

is that selection of certain classes of events (using a particular trigger) a priori post-selects di↵erent

configurations in both colliding systems and these two e↵ects have to be disentangled.

A natural question to ask is whether the parton distributions in configurations interacting

12

Deviation of  RHT(Ncoll) from 1 
drop due to more localized 
hard interactions

increase due to more 
central interactions of 
configurations with 
σ< σtot

drop due increased role of 
configurations with σ> σtot 

the cylinder in which  interaction 

occur  is larger but local density 

does not go up as fast in Glauber
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We conclude from our numerical studies that the  main effect is the change of 
σeff  ; variance place small role if it is modest. Not the case for  1% centrality.

show that there is large sensitivity to the mean value of �(x), even when we allow for significant

fluctuations of �(x).

The results of these calculations are presented by the dashed curve in Fig. 5. One can see from

the plot that for Ncoll larger than the average number of collisions hNcolli ⇡ 7), in the minimal bias

events, one can easily observe the reduction of h�ix by a factor of two. To see whether flickering

of the nucleon in the triggered configuration can mimic the change of h�ix, we also considered the

distribution for !� = 0.1 and 0.2, see the dotted and dot-dashed curves in the figure. One can see

from the figure that this e↵ect is not large enough to prevent the observation of reduction of h�ix.

The opposite limit is that of small enough xp. In this case one would trigger on configurations

with h�i larger than average leading to broadening of the distribution over Ncoll.

To illustrate a possible magnitude of the change in xA distribution as a function of Ncoll, we

present in Fig. 6 the ratios PN (�(x))/PN (� = �in) for �(x)/�in = 2, 1.5, 0.5, 0.25 and ! = 0 and

! = 0.1 calculated using the procedure of Sect. III.
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FIG. 6: Ratio of the probabilities PN of having N = Ncoll wounded nucleons for configurations with di↵erent

h�(x)i and PN for � = �tot. The ratio is averaged over the global impact parameter b and plotted as a

function of N = Ncoll. The solid and dashed curves neglect dispersion of �, while the dotted and dot-dashed

curves show the results obtained with a Gaussian distribution around h�(x)i with variance equal to 0.1.

To explore further the sensitivity to the pattern of flickering for fixed x, we use the scenario

inspired by the model of [20] mentioned in the beginning of the section. We take h�(x)i = �tot/2

and two states with probabilities 2/3 and 1/3 and cross sections �tot/4 and �tot. We compare

results for this model and the Gaussian-like model with the same variance equal 1/2. One can see

that deviation from the results from the calculation with � = �tot are large in both cases but there

is significant di↵erence in the high-Ncall tail (Fig. 7).

15

Ratio of the probabilities PN of having Ncoll wounded nucleons for scattering of the proton in configuration 
different values of  σ(x)  and PN for σ = σtot with CF (ωσ=0.1) and without CF (marked as Glauber)

High sensitivity of the distribution to change of σ(x). 

Large Ncoll enriched by large  σ and vice versa 
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In order to compare with the data we need to use a model for the distribution in ETPb as a 
function of Ncoll. We use the analysis of ATLAS (B.Cole’s talk).

3

In this letter we will focus on the analysis of the AT-
LAS jet production data [12] though qualitatively similar
data were obtained by CMS. The reason is that the AT-
LAS data are presented as a function of the fraction of
the energy of the proton carried by the jet: x = E

jet

/E

p

which for kinematics of interest practically coincides with
x of the parton of the proton involved in the hard interac-
tion. Also the analysis have demonstrated that for fixed
energy release in the nuclear hemisphere the rate of the
jet production as compared to the inclusive rate is pre-
dominantly function of x and not p

t

of the jet.
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FIG. 1: Distribution over the number of collisions for bins in
centrality

It was observed in [12] that the energy release in the
nuclear direction is reasonably well correlated with the
number of the wounded nucleons, N

coll

. and distribution
over N

coll

for fixed centrality interval was determined,
see Fig.1. Hence in order to compare the expectations of
the CFA with the data on jet production as a function of
the centrality we need first to calculate the rates of the
jet production as a function of N

coll

and next convolute
it with the distribution over N

coll

for the experimental
centrality intervals.

The Monte Carlo procedure which we employ and
which is discussed in detail in [9, 15] is based on Eq. 4 and
improves it by taking into account the finite transverse
size of the NN interaction which at the LHC is compara-
ble to the internucleon distance, the transverse spread of
partons in the colliding nucleons given by the generalized
parton densities of the nucleon which allows to take into
account much stronger localization of hard interactions
than the soft interactions. We also employ the realistic
sample of nucleon configurations in nuclei [16]. This al-
lows us to go beyond an approximation of Eq.4 for the
rate of the hard collisions for the interaction with N

coll

nucleons in which the hard rate is simply / N

coll

and
include both the e↵ects of CFs and of the di↵erence in
the transverse geometry of soft and hard NN collisions
(see Fig. 4 of [15]).

The qualitative expectation is that if the rate of jets
is studied as a function of N

coll

the relative strength of
events corresponding to small � would be enhanced for

small N
coll

since hN
coll

i is smaller for this subset and and
it should be strongly suppressed for large N

coll

. This is in
a good agreement with the results of the numerical cal-
culation of the rate of hard collisions for a trigger with
� di↵erent from the average one normalized to the rate
for the rate for the generic jet trigger normalized to the
ration of the corresponding inclusive dijet cross sections
(Fig. 2). For the generic hard collisions we used Eq.2
with !

�

= 0.1 which provides a good description of soft
data of ATLAS. For the small � trigger we considered a
range of h�(x)i /�

tot

and variances between 0.1 and 0.2.
One can see from the figure that for N

coll

correspond-
ing to relatively peripheral collisions the ratio primerily
depends on h�(x)i – sensitivity to the fluctuations of a
cross section is small in this case. At the same time for
N

coll

� h�(x)i there is a strong sensitivity to the vari-
ance.
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So we can estimate h�(x)i using the data from the most
peripheral bin and check our interpretation using R

CP

which is normalized to the 60÷ 90% bin. As mentioned
earlier it also involves using relation between the energy
release in the nuclear fragmentation region and N

coll

[12]
. The results of the calculation and comparison with the
data are presented in Figs. 3, 4.
Overall we find that h�(0.5)i ⇠ �

tot

/2 gives a reason-
able description of the data giving a strong support to the
idea that large x configurations have a weaker interaction
strength. Natural question is to what � these configura-
tions correspond to at fixed target energies. This can be
estimated from the probability conservation property of
P (�):

Z
�(s1)

0
P (�, s1)d� =

Z
�(s2)

0
P (�, s2)d�, (5)

leading to an estimate

�(
p
s= 30 GeV, x=0.5) ⇠ 10mb. (6)

This corresponds to a much smaller value of the ratio
�(x = 0.5)/�

tot

⇡ 1/4 than at the LHC.This reflects an

Probabilities, PN,of interaction with N=Ncoll nucleons and contributions to PN of different 
ΔET intervals.

Alvioli, Cole,  LF, MS, arXiv:1409.7381
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Fluctuations for configurations with small σ maybe different than for average 
one so we considered both ωσ(x=0.5) =0.1 & 0.2

3

In this letter we will focus on the analysis of the AT-
LAS jet production data [12] though qualitatively similar
data were obtained by CMS. The reason is that the AT-
LAS data are presented as a function of the fraction of
the energy of the proton carried by the jet: x = E

jet

/E

p

which for kinematics of interest practically coincides with
x of the parton of the proton involved in the hard interac-
tion. Also the analysis have demonstrated that for fixed
energy release in the nuclear hemisphere the rate of the
jet production as compared to the inclusive rate is pre-
dominantly function of x and not p

t

of the jet.
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It was observed in [12] that the energy release in the
nuclear direction is reasonably well correlated with the
number of the wounded nucleons, N

coll

. and distribution
over N

coll

for fixed centrality interval was determined,
see Fig.1. Hence in order to compare the expectations of
the CFA with the data on jet production as a function of
the centrality we need first to calculate the rates of the
jet production as a function of N

coll

and next convolute
it with the distribution over N

coll

for the experimental
centrality intervals.

The Monte Carlo procedure which we employ and
which is discussed in detail in [9, 15] is based on Eq. 4 and
improves it by taking into account the finite transverse
size of the NN interaction which at the LHC is compara-
ble to the internucleon distance, the transverse spread of
partons in the colliding nucleons given by the generalized
parton densities of the nucleon which allows to take into
account much stronger localization of hard interactions
than the soft interactions. We also employ the realistic
sample of nucleon configurations in nuclei [16]. This al-
lows us to go beyond an approximation of Eq.4 for the
rate of the hard collisions for the interaction with N

coll

nucleons in which the hard rate is simply / N

coll

and
include both the e↵ects of CFs and of the di↵erence in
the transverse geometry of soft and hard NN collisions
(see Fig. 4 of [15]).

The qualitative expectation is that if the rate of jets
is studied as a function of N

coll

the relative strength of
events corresponding to small � would be enhanced for

small N
coll

since hN
coll

i is smaller for this subset and and
it should be strongly suppressed for large N

coll

. This is in
a good agreement with the results of the numerical cal-
culation of the rate of hard collisions for a trigger with
� di↵erent from the average one normalized to the rate
for the rate for the generic jet trigger normalized to the
ration of the corresponding inclusive dijet cross sections
(Fig. 2). For the generic hard collisions we used Eq.2
with !

�

= 0.1 which provides a good description of soft
data of ATLAS. For the small � trigger we considered a
range of h�(x)i /�

tot

and variances between 0.1 and 0.2.
One can see from the figure that for N

coll

correspond-
ing to relatively peripheral collisions the ratio primerily
depends on h�(x)i – sensitivity to the fluctuations of a
cross section is small in this case. At the same time for
N

coll

� h�(x)i there is a strong sensitivity to the vari-
ance.
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FIG. 2: Relative probability of hard processes corresponding
to a small � selection and generic hard processes.

So we can estimate h�(x)i using the data from the most
peripheral bin and check our interpretation using R

CP

which is normalized to the 60÷ 90% bin. As mentioned
earlier it also involves using relation between the energy
release in the nuclear fragmentation region and N

coll

[12]
. The results of the calculation and comparison with the
data are presented in Figs. 3, 4.
Overall we find that h�(0.5)i ⇠ �

tot

/2 gives a reason-
able description of the data giving a strong support to the
idea that large x configurations have a weaker interaction
strength. Natural question is to what � these configura-
tions correspond to at fixed target energies. This can be
estimated from the probability conservation property of
P (�):

Z
�(s1)

0
P (�, s1)d� =

Z
�(s2)

0
P (�, s2)d�, (5)

leading to an estimate

�(
p
s= 30 GeV, x=0.5) ⇠ 10mb. (6)

This corresponds to a much smaller value of the ratio
�(x = 0.5)/�

tot

⇡ 1/4 than at the LHC.This reflects an

So we use  ωσ(x=0.5) =0.1 for following comparison
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×  corrects ATLAS data for difference
 of Ncoll in Glauber and Color

 Fluctuation  models

We can estimate  σ(x=0.6)/σtot[fixed target]=1/4  
Z �(s1)

0
P (�, s1)d� =

Z �(s2)

0
P (�, s2)d�from probability conservation relation:  

σ(x=0.6) ~ σtot/2  gives a reasonable description of the data

➠ x≥0.5 configurations have  small transverse size (~1/2 rN )

4

that h�(x)i / h�i ⇠ 0.6 gives a good description of the252

data as shown in Fig. 3. It is worth emphasizing here253

that a naive explanation of the data as due to energy-254

momentum conservation does not work as one observes255

both suppression and enhancement of Rhard.256
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FIG. 3: Relative probability of hard processes corresponding
to a small � selection as a function of E
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. Data [1] are for
x = 0.5 with black crosses taking into account the di↵erence
between ⌫ calculated in the Glauber and CF approaches.

With the final data becoming available it would be257

possible to perform a comparison with the model for dif-258

ferent x with essentially one free parameter h�(x)i / h�i259
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260

Overall, we find that h�(0.5)i ⇠ (0.5 ÷ 0.6)�
tot

gives261

a reasonable description of the data giving a strong sup-262

port to the idea that large x configurations have a weaker263

interaction strength. A natural question is to what �264

these configurations correspond to at fixed target ener-265

gies. This can be estimated from the probability conser-266

vation property of P (�):267

Z
�(s1)

0
P (�, s1)d� =

Z
�(s2)

0
P (�, s2)d�, (6)

leading to the estimate �(x ⇠ 0.5)/�
tot

⇠ 1/4 for268 p
s = 30 GeV. This value is a factor of two smaller than269

that obtained for the LHC. This reflects an important270

feature of pQCD that the cross section of small size con-271

figurations grows faster with collision energy than for the272

average configurations.273

Our finding has a number of implications. It confirms274

the presence of the CF in pA interactions, and, hence,275

suggests that CF should contribute to dynamics of the276

central AA collisions[12]. A weaker interaction strength277

of the x ⇠ 0.5 configurations also has important impli-278

cation for the EMC e↵ect. It was explained in [14] that279

smaller size configurations for bound nucleons should be280

suppressed as the consequence of the Le Chatelier’s prin-281

ciple. So the presence of the EMC e↵ect of the suppres-282

sion of quark distribution in nuclei as compared to the283

free nucleons starting at x ⇠ 0.4 and fully developed at284

x � 0.5 matches nicely observation of the pattern of the285

suppression of the jet production observed at the LHC.286

A suppression observed for x ⇠ 0.15 where gluons still287

give a large contribution may reflect the fact that the288

gluon density enters at a scale 104 GeV2 which for Q

2
0,289

corresponds to significantly larger x where we also expect290

squeezing for configurations with gluons hence suggesting291

presence of the EMC e↵ect for gluons as well.292

Further experimental studies are necessary to study293

the jet suppression pattern for the processes where gluons294

with x

g

� 0.3 give significant contribution. This would295

allow to measure the e↵ective size of these configurations296

and check directly how e↵ective squeezing is in this case.297

Comparison of W

+
,W

� production at large x

q

would298

be also very interesting since there are indications of the299

di↵erent transverse structure for proton configurations300

with leading u and d quarks.301
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➠ Implication for the LHC - different underling event structure than at smaller x



21

Additional to CF effects which should be included in modeling of pA with jets:

Fluctuations of small x gluon strength in nucleons: variance ωg(x=10-3) ~ 0.15 

Strong dependence of the multiplicity on the impact parameter of the pp collision

(Evidence from pp - supplementary slides)

Fluctuations of the gluon fields in nuclei - Swiss cheese

Influence of CF on impact parameters of the NN interactions in pA.

◉
◉

◉

◉

Outlook

Observing effects of Large Hadronic Configurations  - dijets at small xp

Study of the suppression / enhancement effects as a  function of both xp and xA  

✱

✱
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Slides for discussion  & supplementary slides



If two (three) nucleons are at a small relative impact parameter (b < 0.6 fm), the gluon shadowing strongly 
reduces the overall transverse. gluon density.  However the  thickness of the realistic nuclei is pretty low. So 
average number of overlapping nucleons is rather small ( 2.5  for b ~0) and hence fluctuations of the gluon 
transverse density are large

Fluctuations of transverse  density  of gluons 
in  Pb  on event by event basis (Alvioli and MS 
09) for x outside the shadowing region

4 fm

yellow  <  1
1 green    <2
2 <cyan  < 3
3 <blue  <4
4< magenta < 5
   5< red  

Heavy nuclei are not large 
enough to suppress fluctuations - 
A=200 nucleus for gluons with x 
> 10-2 is like a thin slice of Swiss 
cheese. 
   Far from the A →∞ limit.

23

Leading twist shadowing observed at LHC does suppress 
some of fluctuations but new types of fluctuations
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Universal relationship of soft and hard multiplicity (Azarkin, Dremin , MS, 14)
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Figure 7: Ratio of N
j

at given N
ch

to N
j

of bulk of events: (a) - for charged-parctile jet
p
T

> 5GeV/c, (a) - for charged-parctile jet p
T

> 30GeV/c. The black solid lines represent data
sorted according the total N

ch

. Dashed blue lines represent the ratio if data would be sorted
according the UE N

ch

, however, the data points are plotted using total N
ch

. To corrected
the total N

ch

to the UE N
ch

, one need to subtract ⇡ 10 (15) particles for p
T

threshold of
5 (10) GeV/c.
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Figure 8: Relative yield of hard momentum processes as a function of N
ch

, which does not
include particles originating from the hard interactions. The di↵erential N

ch

distribution is
taken from [12].

9

Universality of scaling of for hard processes scales with multiplicity:   simple trigger - 
dijets(CMS) & direct J/ψ , D and B-mesons (Alice)

max value from geometry

Superhigh multiplicities require 
special rare configurations in 

nucleons 

reproduced by P2(b)

R = P2(0)⇥in(pp) =
m2

g

12�
⇥in(pp)
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Figure 4: Fraction of events with N

ch

> N

fixed

ch

. The N

ch

is defined as a number of stable
charged particles with p

T

> 0.5 GeV/c and |⌘| < 2.4. The N

ch

distribution is taken from [14].

|<2.4)η > 0.5 GeV/c,  |
T

(pchN
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b 
(fm

)
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1

1.5
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2.5

Figure 5: Correspondence between impact parameter and N

ch

. N
ch

is defined here as a number
of charged particles with |⌘| < 2.4 and p

T

> 0.5 GeV/c. Since events with N

ch

> 35 are
e↵ectively central as shown below, the correspondence is not valid there.

7

Correspondence between impact 
parameter and Nch. Nch is defined here as 
a number of charged particles with |η| < 
2.4 and pT > 0.5 GeV/c. Since events with 
Nch > 35 are effectively central, the 
correspondence is not valid there.

b(Nch/<Nch> ~ 2) ~ 0.7 fm ●

b(Nch/<Nch> ~ 3) ~ 0.5 fm ●
For  Nch/<Nch> ≳ 4 gluon fluctuations are important: jet multiplicity otherwise too high  
& probability of Nch/<Nch> > 4  events is much smaller than given by P2(b). 

●
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Test:    Calculate inelastic diffraction off nuclei - no free parameters
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Reminder -in the limit of small inelastic diffraction  and neglecting radius 
of NN interaction as compared to internucleon distance, Gribov - 
Glauber model leads to 

x = �

hN
in T (b)/A

Z
d~bT (b) = Awhere 

Series can be rewritten as sum of positive terms corresponding to 
cross sections σn of exactly one, two ... inelastic interactions

Bertocchi, Treleani, 1976 

�

hA
in =

AX

n=1

�n, �n =
A!

(A� n)!n!

Z
d

~

b x

n(1� x)A�n
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�

hA
in =

Z
d

~

b

⇥
1� (1� x)A

⇤
=

AX

n=1

(�1)n+1
A!

(A� n)!n!

Z
d

~

b x

n



correlations in the optical limit Glauber-Gribov formalism can be found in Refs. [6–8] and

will not be discussed here. Eq. (7) can be rewritten as a sum of positive cross sections [9]

as follows:

σhAin =
A
∑

n=1

σn, σn =
A!

(A− n)!n!

∫

dbxn(1− x)A−n (8)

where σn denotes the cross section of the physical process in which n nucleons have been

involved in inelastic interactions with the projectile. Then the average number of interactions

〈N〉 may be expressed as

〈N〉 =
A
∑

n=1

nσn

/ A
∑

n=1

σn =
σhNin
σhAin

∫

d2b
A
∑

n=1

A!

(A− n)!(n− 1)!
xn(1− x)A−n

=
σhNin
σhAin

∫

d2b AT (b) =
AσhNin
σhAin

, (9)

which coincides with the naive estimate of shadowing as being equal to the number of

nucleons shadowed in average collision. .

We can include color fluctuations by allowing the cross section σin to be distributed

according to P (σin):

σhAin =
∫

dσinPN(σin)
∫

db
[

1− (1− x)A
]

(10)

and

σn =
∫

dσinPN (σin)
A!

(A− n)!n!

∫

dbxn(1− x)A−n . (11)

The probability of collisions with exactly k inelastic interactions in both Glauber model and

the color fluctuation approximation are simply Pk = σk/σhA
in .

Using the equations above we can for example calculate average number of the collisions

which is given by the same equation as for the Glauber model (Eq. (9)), leading to a very

small (few %) change of average N since the inelastic corrections to σhA
in are small. At the

same time we can calculate the variance of the distribution over the number of collisions.

We observe that Eq. (11) leads to

〈N(N − 1)〉 = A(A− 1)
〈

σ2
in

〉

∫

dbT 2(b). (12)

and hence the variance is equal to

ωN ≡
〈N2〉
〈N〉2

− 1 =
A(A− 1) 〈σ2

in〉
〈N〉2

∫

dbT 2(b) +
1

〈N〉
− 1. (13)

5

Simple geometric interpretation

Probability of exactly n interactions is Pn = �n/�
hA
in

29

Can use P(σ)  to implement  Gribov- Glauber dynamics of inelastic
 pA interactions. Baym et al 91-93 

�

NA
in =

Z
d�inP (�in)

Z
d

~

b

⇥
1� (1� x)A

⇤

�n =

Z
d�inP (�in)

A!

(A� n)!n!

Z
d

~

b x

n(1� x)A�n
.


