

Direct Photon Results from ALICE and the Direct Photon Puzzle

Ab initio approaches in many-body QCD confront heavy-ion experiments December 15 - 17, 2014

Klaus Reygers

Physikalisches Institut University of Heidelberg, Germany

The Role of Direct Photons in Heavy-Ion Physics

- Escape medium unscathed
- Produced during all stages→ test of the hydro paradigm
- Experimental access to initial QGP temperature (?)

QGP photon rate (lowest order):

$$E\gamma \frac{dN\gamma}{d^3p} \propto \alpha\alpha_s T^2 e^{-E_\gamma/T} \log \frac{E_\gamma T}{k_c^2}$$

A Complication for the Temperature Measurement: Blueshift due to Radial Flow

$$\mathcal{E}_{\gamma}rac{\mathsf{d}^3 \mathcal{N}_{\gamma}}{\mathsf{d}^3 p_{\gamma}} \propto e^{-\mathcal{E}_{\gamma}/\mathcal{T}_{\mathsf{eff}}}$$

$$T_{
m eff} = \sqrt{rac{1+eta_{
m flow}}{1-eta_{
m flow}}} imes T$$
2 for $eta_{
m flow} = 0.6$

- Large blueshift at late times when $T \approx 150 200 \text{ MeV}$
- Extraction of initial temperature from data requires comparison to (hydro) model

Photon Conversion Method: Precise Knowledge of Material Budget is Essential

How to Measure Direct Photons?

$$\gamma_{
m direct} := \gamma_{
m inclusive} - \gamma_{
m decay} = (1 - rac{1}{R}) \gamma_{
m inclusive}$$

systematic uncertainties partially cancel in this ratio (efficiency, energy/momentum scale, material budget ...)

with
$$R = \frac{(\gamma_{\rm inclusive}/\pi^0)_{\rm meas}}{(\gamma_{\rm decay}/\pi^0)_{\rm calc}}$$

Calculated decay photon cocktail (π^0 , η , ω , ...), π^0 measured, other hadrons from m_T scaling so far

No Significant Direct-Photon Excess in pp at 7 TeV

No Significant Direct-Photon Excess in Peripheral Pb-Pb

Direct-photon Excess in Central Pb-Pb Collisions

15 - 20% direct-photon excess for $I < p_T < 2 \text{ GeV}/c$ where contribution from pQCD photons is small

Direct Photon Spectrum in Central Pb-Pb Collisions

 $(Y_{direct} := Y_{all} - Y_{decay})$

Low p_T part of the spectrum described by exponential with inverse slope $T = 304 \pm 51$ MeV

Comparison of the Direct Photon Excess in 0-40% most central Pb-Pb collisions with Hydro Models

- Direct photon excess appears to be larger than expected in hydrodynamic model
- Are we missing an important photon source in these models?

How to Measure the Direct-Photon v_2 ?

Reaction plane (RP) from charged particles in forward direction

$$2.8 < \eta < 5.1$$

$$2.8 < \eta < 5.1$$
 $-3.7 < \eta < -1.7$

Inclusive photons (mid-rapidity):

$$v_2^{\gamma, \text{incl}} = \frac{\langle \cos(2(\varphi - \Psi_2^{\text{RP}})) \rangle}{C}$$
, $C = \text{resolution correction}$

$$C = \text{resolution correction}$$

- Decay photon v_2 from cocktail calculation based on measured pion v_2 (+ higher mass hadrons)
- Inclusive photon v_2 is weighted average of decay photon and direct photon v_2 . Thus one can calculate the direct-photon v_2 as

$$v_2^{\gamma, ext{direct}} = rac{R \, v_2^{\gamma, ext{incl}} - v_2^{\gamma, ext{decay}}}{R-1} \qquad ext{with} \quad R = rac{\gamma_{ ext{incl}}}{\gamma_{ ext{decay}}} = 1 + rac{\gamma_{ ext{direct}}}{\gamma_{ ext{decay}}}$$

Measured Inclusive Photon and Calculated Decay Photon v₂

- $v_2(incl) < v_2(decay)$ for $p_T > 3 \text{ GeV/c}$
 - expected from $v_2 = 0$ for prompt photons
- $v_2(incl) \approx v_2(decay)$ for $p_T < 3 \text{ GeV}/c$:
 - If there is a large direct photon component its v₂ must be very similar to the decay photon v₂
 - v₂(incl) described by models with small R_Y predicted by the same models

Recap: What to expect for the Direct Photon v_2 ?

- Large inverse slope parameter: $T_{\text{slope}} \approx 304 \pm 51^{\text{stat+syst}} \text{ MeV}$ (>> $T_c = 150 160 \text{ MeV}$)
- Could indicate that direct photons mostly come from early hot QGP phase
- Expect then small elliptic flow signal ($v_2 \approx 3\%$ or so at maximum) as collective flow needs time to build up

Direct Photon Elliptic Flow Appears to be Larger than Expected in Hydro Models

- Many direct photons from late stage with $T \approx T_c \approx 150 160 \text{ MeV}$?
- Then large inverse slope parameter due to Doppler blueshift with typical hadronic flow velocity $\beta_{flow} \approx 0.6 c$?
- However, current systematic uncertainties are sizable so that there is no big puzzle looking at the ALICE data alone

The Direct Photon Puzzle

- The two parts of the puzzle
 - ▶ Direct photon yields at low p_T (I < p_T < 3 GeV/c) not described by models
 - Large direct photon v_2 , similar in magnitude to pion v_2 , not described by hydro models
- Currently mostly in RHIC data, however, similar trend at the LHC
- Challenges ...
 - standard (hydro) model of the space-time evolution and/or
 - current photon emission rates for the QGP and the HG

Statistical Significance of the Puzzle: Photon Excess R is the Key Quantity

Direct photon excess:

Take one point (e.g. $p_T = 2 \text{ GeV}/c$):

$$R = 1.18 \pm 0.07_{\text{stat}} \pm 0.09_{\text{sys}}$$

= 1.18 ± 0.114_{tot}

The excess for this point is a 1.6 sigma effect

Systematic uncertainties largely correlated in p_T

Direct photon *v*₂:

$$v_2^{\gamma, \mathsf{dec}} = (1 + \varepsilon) v_2^{\gamma, \mathsf{incl}}$$

$$v_2^{\gamma, \text{dir}} = v_2^{\gamma, \text{incl}} \left(1 - \frac{\varepsilon}{R - 1} \right)$$

 $R_{\text{true}} < R_{\text{exp,today}}$ would solve both parts of the direct photon puzzle ...

Small but finite chance that this will be the solution of the puzzle

Experimental Prospects of Direct Photon Measurements in ALICE

- Independent measurement with e.m. calorimeters
- Conversions method
 - Use absence of signal in pp to constrain material budget uncertainty
- Use γ_{conv} - γ_{calo} pairs (like PHENIX)
 - Trade material budget uncertainty for calorimeter energy scale uncertainty
 - Very useful as independent method
 - Don't expect large reduction of systematic uncertainty in ALICE
- Virtual photon method

EMMI Rapid Reaction Task Force on the **Direct Photon Flow Puzzle**

- Feb. 2014, 25 participants (theory + experiment)
- Open Symposium: https://indico.gsi.de/conferenceDisplay.py?confld=2662
- Detailed discussions on
 - \blacktriangleright Averaging of v_n over large centrality bins, definition of v_n in models
 - Definition of decay photon cocktail in experiment and models, contribution from short-lived resonances
 - Comparison of the space-time evolution (hydro models, PHSD, parameterized fireball evolution)
 - pQCD contribution in various models
 - Initial flow, near T_c enhancement of photon rates, bremsstrahlung photons in the hadrons gas, Glasma photons, role of fragmentation photons, ...
- Puzzle remains after checking various aspects of the data/theory comparison

Possible Solutions of the Direct Photon Puzzle

- Maybe many more photons from late stage close to T_c and hadron gas phase (need large increase in HG rates) [van Hees, He, Rapp, arXiv:1404.2846]
 - Theoretical justification?
- Maybe just bremsstrahlung from the HG? (m+m→m+m+γ, m+B→m+B+γ) [Linnyk, Cassing, Bratkovskaya, arXiv:1311.0279]
 - Important source in PHSD transport model
- Exotic new photon source, e.g., related to large initial B field? [Basar, Kharzeev, Skokov., arXiv:1206.1334]
 - seems unlikely to me (centrality dependence, \sqrt{s} dependence, v_3)
- Initial flow before hydro evolution starts, e.g., IPGlasma model?
 - important, but does not address the missing photon yield
- Glasma photons, i.e., large photon production in very early gluon-rich phase?
 [McLerran, Schenke, arXiv:1403.7462], [Klein-Bösing, McLerran, arXiv:1403.1174]
 - promising, but so far based on simplified models
 - calculations from first principles needed

$$rac{1}{\pi R^2} rac{dN_{\gamma}}{dyd^2p_T} = F(Q_{\mathsf{sat}}/p_T)$$

Outlook

- Direct-photon production currently not understood
- Direct photons started out as probe of the early phase [Shuryak, PLB 78 (1978) 150]
- Large direct photon v_2 : Early stage contribution outshined by photons from late phase with $T \approx T_c$ and below?
- Key question: Early or late production?
- Possible paradigm shift in interpretation of direct photons in A+A collisions
- New measurements needed, e.g., direct-photon HBT

Extra slides

Testing "Exotic" Photon Sources By Measuring the Photon v₃

Basar, Kharzeev, Skokov., arXiv:1206.1334

- Photon production resulting from large initial B field?
- Could explain v₂
- Expect small v₃ in these models
- Inclusive photon v₃ measured, not yet conclusive

Photon Conversion Method: Precise Knowledge of Material Budget Essential

Decay Photon Cocktail from Measured π⁰ Spectrum

- π^0 spectrum measured, heavier mesons from m_T scaling
- Only π^0 , η , ω relevant, the rest is negligible

Direct Photon at RHIC: Comparison of PHENIX data with

STAR, arXiv:1405.3940

PHENIX, arXiv:0912.0244

Direct Photon Spectra at RHIC and the LHC

