Classical gauge field picture of the initial stage in $A+A$ collisions

T. Lappi
University of Jyväskylä, Finland

Ab-initio approaches in many-body QCD, Heidelberg, December 2014

Outline

- Introduction: CGC, Glasma
- JIMWLK evolution in Langevin form
- Classical Yang-Mills fields in the initial stage
T.L., [arXiv:1105.5511], PLB 2011
- Wilson loop in glasma with MV or JIMWLK initial conditions

Dumitru, T.L., Nara [arXiv:1401.4124], PLB 2014

Comments:

- This talk is purely $2+1$ d boost-invariant.
- Only $Q_{\mathrm{s}} \tau \lesssim 10$
- Starting point for isotropization

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.
$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\text {s }}$
- classical field approximation.
- small α_{s}, but nonperturbative

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

$$
\Downarrow
$$

$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\mathrm{s}}$
- classical field approximation.
- small α_{s}, but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x=$ source ρ, probability distribution $W_{y}[\rho]$
- Small $x=$ classical gluon field $A_{\mu}+$ quantum flucts.

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

$$
\Downarrow
$$

$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\text {s }}$
- classical field approximation.
- small α_{s}, but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x=$ source ρ, probability distribution $W_{y}[\rho]$
- Small $x=$ classical gluon field $A_{\mu}+$ quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. JIMWLK: y-dependence of $W_{y}[\rho]$; Langevin implementation

Wilson line

Classical color field described as Wilson line

Eikonal propagation of high energy probe in color field:

$$
\begin{gathered}
U(\mathbf{x})=P \exp \left\{i g \int \mathrm{~d} x^{-} A_{\operatorname{cov}}^{+}\left(\mathbf{x}, x^{-}\right)\right\} \in \mathrm{SU}(3) \\
\text { Color charge } \rho: \quad \nabla^{2} A_{\operatorname{cov}}^{+}\left(\mathbf{x}, x^{-}\right)=-g \rho\left(\mathbf{x}, x^{-}\right) \\
\left(\quad x^{ \pm}=\frac{1}{\sqrt{2}}(t \pm z) \quad ; \quad A^{ \pm}=\frac{1}{\sqrt{2}}\left(A^{0} \pm A^{z}\right) ; \quad \mathbf{x} 2 \mathrm{~d} \text { transverse }\right)
\end{gathered}
$$

Q_{s} is characteristic momentum/distance scale

Precise definition used here:

$$
\begin{aligned}
\frac{1}{N_{\mathrm{c}}}\left\langle\operatorname{Tr} U^{\dagger}(\mathbf{0}) U(\mathbf{x})\right\rangle & =e^{-\frac{1}{2}} \\
& \Longleftrightarrow \mathbf{x}^{2}=\frac{2}{Q_{\mathrm{s}}^{2}}
\end{aligned}
$$

JIMWLK evolution

Classical color field described as Wilson line

$$
U(\mathbf{x})=P \exp \left\{i g \int \mathrm{~d} x^{-} A^{+}\left(\mathbf{x}, x^{-}\right)\right\} \in \mathrm{SU}(3)
$$

- Energy dependent probability distribution $W_{y}[U] \quad(y \sim \ln \sqrt{s})$
- Energy/rapidity dependence of $W_{y}[U]$ given by JIMWLK renormalization group equation

$$
\partial_{y} W_{y}[U(\mathbf{x})]=\mathcal{H} W_{y}[U(\mathbf{x})]
$$

- Then get all expectation values $\left\langle U \cdots U^{\dagger}\right\rangle$

JIMWLK Hamiltonian: (fixed coupling)

$$
\begin{aligned}
& \mathcal{H} \equiv \frac{1}{2} \alpha_{s} \int_{\mathbf{x y z}} \frac{\delta}{\delta A_{c}^{+}(\mathbf{y})} \mathbf{e}^{b a}(\mathbf{x}, \mathbf{z}) \cdot \mathbf{e}^{c a}(\mathbf{y}, \mathbf{z}) \frac{\delta}{\delta A_{b}^{+}(\mathbf{x})} \\
& \mathbf{e}^{b a}(\mathbf{x}, \mathbf{z})=\frac{1}{\sqrt{4 \pi^{3}}} \frac{\mathbf{x}-\mathbf{z}}{(\mathbf{x}-\mathbf{z})^{2}}\left(1-U^{\dagger}(\mathbf{x}) U(\mathbf{z})\right)^{b a}
\end{aligned}
$$

Langevin formulation

Fokker-Planck \Longrightarrow Langevin in JIMWLK Blaizot, lancu, Weigert 2002
Simple form for Langevin step

$$
\begin{aligned}
& U_{\mathbf{x}}(y+\mathrm{d} y)=\exp \left\{-i \frac{\sqrt{\alpha_{\mathbf{s}} \mathrm{d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathbf{z}}^{\dagger}\right)\right\} \\
& \times U_{\mathbf{x}}(y) \exp \left\{i \frac{\sqrt{\alpha_{\mathbf{s}} \mathrm{d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \xi_{\mathbf{z}}\right\}, \\
& K_{\mathbf{x}-\mathbf{z}}^{i}=\frac{(\mathbf{x}-\mathbf{z})^{i}}{(\mathbf{x}-\mathbf{z})^{2}} \quad \frac{\text { Qeee }}{} \quad i=x, y
\end{aligned}
$$

Noise: $\left\langle\xi_{\mathbf{x}}\left(y_{m}\right)_{i}^{a} \xi_{\mathbf{y}}\left(y_{n}\right)_{j}^{b}\right\rangle=\alpha_{\mathbf{s}} \delta^{a b} \delta^{i j} \delta_{\mathbf{x y}}^{(2)} \delta_{m n}, \quad \xi=\xi^{a} t^{a}$
More recent developments not discussed here:

- Fixed \Longrightarrow running α_{s} : proposal by T.L., Mäntysaari 2012
- Full NLO Balitsky, Chirilli 2013, Kovner, Lublinsky, Mulian 2014
- NLO BFKL/BK problematic, treatment for JIMWLK not obvious.

Interpreting JIMWLK: derive BK

$$
U_{\mathrm{x}}(y+\mathrm{d} y)=e^{-i \frac{\sqrt{\alpha_{s} d y}}{\pi}} \int_{\mathbf{z}} \mathbf{K}_{\mathrm{x}-\mathrm{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathrm{z}}^{\dagger}\right) \quad U_{\mathrm{x}} e^{i \frac{\sqrt{\alpha_{s} d y}}{\pi}} \int_{\mathbf{z}} \mathbf{K}_{\mathrm{x}-\mathrm{z}} \cdot \xi_{\mathbf{z}},
$$

- At $\mathrm{d} y \rightarrow 0$ develop to $\mathcal{O}\left(\xi^{2}\right)$ and take expectation values.
- BK Balitsky-Kovchegov is equation for dipole $\hat{D}_{\mathbf{x}, \mathbf{y}}=\operatorname{Tr} U^{\dagger}(\mathbf{x}) U(\mathbf{y}) / N_{\mathrm{c}}$
- Contract ξ^{\prime} 's from timestep of $U^{\dagger}(\mathbf{x})$ with one from $U(\mathbf{y})$: real terms

- Contract two ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ or $U(\mathbf{y})$: virtual terms

- Result is BK equation:

$$
\partial_{y} \hat{D}_{\mathbf{x}, \mathbf{y}}(y)=\frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{2 \pi^{2}} \int_{\mathbf{z}}\left(\mathbf{K}_{\mathbf{x}-\mathbf{z}}^{2}+\mathbf{K}_{\mathbf{y}-\mathbf{z}}^{2}-2 \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{z}}\right)\left[\hat{D}_{\mathbf{x}, \mathbf{z}} \hat{D}_{\mathbf{z}, \mathbf{y}}-\hat{D}_{\mathbf{x}, \mathbf{y}}\right] .
$$

Gluon fields in AA collision

Classical Yang-Mills

Change to LC gauge:

Gluon fields in AA collision

Classical Yang-Mills

Change to LC gauge:

$$
A_{(1,2)}^{i}=\frac{i}{g} U_{(1,2)}(\mathbf{x}) \partial_{i} U_{(1,2)}^{\dagger}(\mathbf{x})
$$

$U(\mathbf{x})$ is the same Wilson line

$$
\text { At } \tau=0 \text { : }
$$

$$
\begin{aligned}
\left.A^{i}\right|_{\tau=0} & =A_{(1)}^{i}+A_{(2)}^{i} \\
\left.A^{\eta}\right|_{\tau=0} & =\frac{i g}{2}\left[A_{(1)}^{i}, A_{(2)}^{i}\right]
\end{aligned}
$$

Gluon fields in AA collision

Classical Yang-Mills

Change to LC gauge:

$$
A_{(1,2)}^{i}=\frac{i}{g} U_{(1,2)}(\mathbf{x}) \partial_{i} U_{(1,2)}^{\dagger}(\mathbf{x})
$$

$U(\mathbf{x})$ is the same Wilson line

$$
\begin{aligned}
\text { At } \tau=0: \\
\begin{aligned}
\left.A^{i}\right|_{\tau=0} & =A_{(1)}^{i}+A_{(2)}^{i} \\
\left.A^{\eta}\right|_{\tau=0} & =\frac{i g}{2}\left[A_{(1)}^{i}, A_{(2)}^{i}\right]
\end{aligned}
\end{aligned}
$$

$\tau>0$ Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field \Longrightarrow Then average over initial Wilson lines.
Fix gauge, Fourier-decompose: gluon spectrum
Gluons with $p_{T} \sim Q_{\mathrm{s}}$ - strings of size $R \sim 1 / Q_{\mathrm{s}}$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325
Q_{s} is only dominant scale
Parametrically gluon spectrum $\frac{d N_{g}}{d y d^{2} \mathbf{x} d^{2} \mathbf{p}}=\frac{1}{\alpha_{s}} f\left(\frac{p_{T}}{Q_{s}}\right)$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325

Q_{s} is only dominant scale

$$
\text { Parametrically gluon spectrum } \frac{d N_{g}}{d y d^{2} \mathbf{x} d^{2} \mathbf{p}}=\frac{1}{\alpha_{\mathrm{s}}} f\left(\frac{p_{T}}{Q_{\mathrm{s}}}\right)
$$

Unintegrated gluon distribution

$$
C(\mathbf{k})=\frac{k_{T}^{2}}{N_{\mathrm{c}}} \operatorname{Tr}\left\langle U(\mathbf{k}) U^{\dagger}(\mathbf{k})\right\rangle
$$

becomes harder with evolution.

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325

Q_{S} is only dominant scale

$$
\text { Parametrically gluon spectrum } \frac{d N_{g}}{d y d^{2} \mathbf{x} d^{2} p}=\frac{1}{\alpha_{\mathrm{s}}} f\left(\frac{p_{T}}{Q_{\mathrm{s}}}\right)
$$

Unintegrated gluon distribution

$$
C(\mathbf{k})=\frac{k_{T}^{2}}{N_{c}} \operatorname{Tr}\left\langle U(\mathbf{k}) U^{\dagger}(\mathbf{k})\right\rangle
$$

becomes harder with evolution.

Produced gluon spectrum: harder at higher \sqrt{s} (Here: midrapidity, $y \equiv \ln \sqrt{s / s_{0}}$)

Universality in the IR spectrum?

Universality in the IR spectrum?

- Gluon spectrum in the UV depends on anomalous dimension \Longrightarrow different for MV $(y=0)$, JIMWLK ($y>0$)
IR seems to scale, close to

$$
\frac{\mathrm{d} N}{\mathrm{~d}^{2} \mathbf{p}} \sim \frac{1}{p_{T}}
$$

Gauge inv. probe for $p_{T} \lesssim Q_{\mathrm{s}}$? Spatial Wilson loop

$$
W(A)=\frac{1}{N_{\mathrm{c}}} \operatorname{Tr} \mathbb{P} \exp \left\{i g \oint_{A} \mathrm{~d} \mathbf{x} \cdot \mathbf{A}\right\}
$$

$A=$ area inside loop

2d lattice: transverse links:

$$
\uparrow=U_{i}(\mathbf{x})=\exp \left\{i g a A_{i}\right\}
$$

Measure Wilson loops

Dumitru, Nara, Petreska PRD 2013 \& Dumitru, T.L., Nara PLB 2014

Calculation is simple:

- Construct initial glasma fields at $\tau=0$ using e.g.
- MV model
- rcJIMWLK
- fcJIMWLK
(Try to have same Q_{s} a to minimize lattice effects)
- Evolve forward in τ

- Measure $W(A)$ (A=area)

Behavior in both UV $\left(A Q_{\mathrm{s}}^{2} \lesssim 1\right)$ and $\mathrm{IR}\left(A Q_{\mathrm{s}}^{2} \gtrsim 1\right)$ parametrized as

$$
W=\exp \left\{-(\sigma A)^{\gamma}\right\}
$$

Fit is quite good: solid lines in figure.

Fit to Wilson loop area dependence

$$
W=\exp \left\{-(\sigma A)^{\gamma}\right\} \Longleftrightarrow \ln (-\ln W)=\gamma \ln \left(A Q_{\mathrm{s}}^{2}\right)+\gamma \ln \left(\sigma / Q_{\mathrm{s}}^{2}\right)
$$

Main observations

- UV (small loop): initial slope γ stays
- IR (big loop): all init. conditions collapse to universal behavior

Wilson loop scaling exponents

UV $\left(e^{-3.5}<A Q_{\mathrm{s}}^{2}<e^{-0.5}\right)$
Remembers initial condition

$\operatorname{IR}\left(e^{0.5}<A Q_{\mathrm{s}}^{2}<e^{5}\right)$
Initial conditions collapse to

$$
\gamma_{\mathrm{R}} \approx 1.2,
$$

decreasing slowly with τ

"String tension" coefficients

In expanding system fields naturally decrease as

$$
\tau \gg 1 / Q_{\mathrm{s}} \Longrightarrow A_{\mu} \sim 1 / \sqrt{\tau} \Longrightarrow \sigma / Q_{\mathrm{s}}^{2} \sim 1 /\left(Q_{\mathrm{s}} \tau\right)
$$

Plot "string tension" σ as scaling variable $\sigma \tau / Q_{\mathrm{s}}$

UV: initial conditions differ

IR: even σ universal within $\sim 10 \%$
(Note: the numerical value of $\sigma / Q_{\mathrm{s}}^{2}$ depends on the convention used to define Q_{s})
At $\tau=0: \sigma / Q_{\mathrm{s}}^{2} \approx 0.55 \ldots 0.6(\mathrm{UV})$ and $\sigma / Q_{\mathrm{s}}^{2} \approx 0.35 \ldots 0.45$ (IR)

Magnetic field correlator

Wilson loop measures magnetic flux:

$$
W(A)=\frac{1}{N_{c}} \operatorname{Tr} \mathbb{P} \exp \left\{i g \oint_{A} \mathrm{~d} \mathbf{x} \cdot \mathbf{A}\right\}=\frac{1}{N_{c}} \operatorname{Tr} \exp \left\{i g \int \mathrm{~d}^{2} \mathbf{x} B_{z}(\mathbf{x})\right\}
$$

If magnetic field consists of uncorrelated Gaussian domains:

$$
\begin{aligned}
\langle W(A)\rangle=\exp \left\{-\frac{1}{2} \frac{1}{N_{c}} \operatorname{Tr}\right. & \left.\left\langle\left[\int d^{2} \mathbf{x} g B_{z}(\mathbf{x})\right]^{2}\right\rangle\right\} \\
& \Longrightarrow W(A) \text { related to }\langle B(\mathbf{x}) B(\mathbf{y})\rangle
\end{aligned}
$$

Here: no gauge fixing, but connect $B(\mathbf{x})$ and $B(\mathbf{y})$ with gauge link
Check: compare

- Direct measurement of $W(A)$
- Reconstruction from BB-correlator good agreement.

Magnetic field correlator

However: no obvious scaling seen in $B B$-correlator

Same on log plot

$$
C(|\mathbf{x}-\mathbf{y}|) \equiv \operatorname{Tr}\left\langle[B(\mathbf{x}) B(\mathbf{y})]_{\text {gauge link }}\right\rangle
$$

Straight line: $\sim\left(r Q_{\mathrm{s}}\right)^{-1.55}$.
(For $C(r) \sim\left(r Q_{\mathrm{s}}\right)^{-\alpha}$ one would get $\gamma=2-\alpha / 2 \Longleftrightarrow \alpha=4-2 \gamma$; from $W(A)$ measured $\gamma=1.22)$

Wilson loop fluctuations and eigenvalue distributions

Work in progress, Dumitru, T.L., Nara

How are the Wilson lines distributed in $\mathrm{SU}(3)$?

Fluctuations of ReW and ImW

Eigenvalue λ phase distribution:

For large areas A both look like random $\mathrm{SU}(3)$ matrices:
$\sigma^{2}(\operatorname{Re} W)=\sigma^{2}(\operatorname{Im} W)=\frac{1}{2 N_{c}{ }^{2}}$

$$
P(\varphi \equiv \arg (\lambda))=\frac{1}{2 \pi}\left(1+\frac{2}{3} \cos 3 \varphi\right)
$$

Conclusions

- CYM initial state for AA collision
- Universal behavior in the for $p_{T} \ll Q_{\mathrm{S}}$ seen in gluon spectrum
- Same universality seen in spatial Wilson loop
- Slightly nontrivial area dependence $W \sim \exp \left\{-A^{1.2}\right\}$
- Note: this is still in the boost-invariant 2d theory.
- Effect of instabilities, isotropization on the soft modes?

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

- 1-d diffusion eq. (כ F.-P. eq.)

$$
\partial_{t} P(x, t)=D \partial_{x}^{2} P(x, t)
$$

- $P(x, t)=$ probability for particle to be at location x at time t.
- For $x=0$ at $t=0$ solution:

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left\{-\frac{x^{2}}{4 D t}\right\}
$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

- 1-d diffusion eq. (כ F.-P. eq.)

$$
\partial_{t} P(x, t)=D \partial_{x}^{2} P(x, t)
$$

- $P(x, t)=$ probability for particle to be at location x at time t.
- For $x=0$ at $t=0$ solution:

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left\{-\frac{x^{2}}{4 D t}\right\}
$$

- Langevin equation:

$$
\begin{aligned}
x(t) & =\sqrt{2 D} \eta(t) \\
\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle & =\delta\left(t-t^{\prime}\right) \\
\langle x(t)\rangle & =0 \\
\left\langle x^{2}(t)\right\rangle & =2 D t \\
\left\langle x(t) x\left(t^{\prime}\right)\right\rangle & =2 D \min \left(t, t^{\prime}\right) \\
& \Longrightarrow \text { same as F.-P. }
\end{aligned}
$$

1d Brownian motion to JIMWLK

- Replace $x \Longrightarrow U(\mathbf{x})$ and $t \Longrightarrow y$.
- Constant $D \Longrightarrow$ nonlinearity (U-dependence) in kernel
- $\left(N_{c}^{2}-1\right) N_{\perp}^{2}$-dimensional nonlinear diffusion equation. ($N_{\perp}^{2}=$ number of lattice points in transverse plane.)

Scale of running α_{s} in JIMWLK

BK for $\hat{D}_{\mathbf{x}, \mathbf{y}}(y)$ describes dipole splitting $\mathbf{x}-\mathbf{y} \quad \longrightarrow \quad \mathbf{x}-\mathbf{z} ; \mathbf{z}-\mathbf{y}$

- α_{s} given by parent $\mathbf{x}-\mathbf{y}$: easy in BK, but funny in JIMWLK: Langevin is only for one Wilson line
- Daughter (scale in K): easy to implement as $\sqrt{\alpha_{\mathrm{s}}}$, but why?

$$
\sqrt{\alpha_{\mathrm{s}}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \rightarrow \sqrt{\alpha_{\mathrm{s}}(\mathbf{x}-\mathbf{z})} \mathbf{K}_{\mathbf{x}-\mathbf{z}}
$$

- Used in BK: combinations of these two.
- Suggestion t.L., H.Mäntysaari 2012 : natural scale is momentum of radiated gluon.
- Implemented by modifying momentum space noise correlator

$$
\begin{aligned}
&\left\langle\xi_{\mathbf{x}}(m)_{i}^{a} \xi_{\mathbf{y}}(n)_{j}^{b}\right\rangle \sim \alpha_{\mathrm{s}} \delta_{\mathbf{x y}}^{(2)}=\alpha_{\mathrm{s}} \int \frac{\mathrm{~d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \\
& \Longrightarrow \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k})
\end{aligned}
$$

Reinterpreting JIMWLK

$$
U_{\mathbf{x}}(y+\mathrm{d} y)=\exp \left\{-i \frac{\sqrt{\mathrm{~d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathbf{z}}^{\dagger}\right)\right\}
$$

$$
\times U_{\mathbf{x}}(y) \exp \left\{i \frac{\sqrt{\mathrm{~d} y}}{\pi} \int_{\mathbf{z}^{\prime}} \mathbf{K}_{\mathbf{x}-\mathbf{z}^{\prime}} \cdot \xi_{\mathbf{z}^{\prime}}\right\}
$$

$$
\left\langle\xi_{\mathbf{x}}(m)_{i}^{a} \xi_{\mathbf{y}}(n)_{j}^{b}\right\rangle \sim \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k}) \equiv \widetilde{\alpha}_{\mathbf{x}-\mathbf{y}}
$$

- Breaks time-reversal-symmetry: choose scale as momentum of gluon either before or after the target
- Two gluon coordinates instead of one

Recovering BK

- Equation for dipole now involves higher point functions:

$$
\begin{aligned}
& \partial_{y} \hat{D}=\frac{N_{c}}{2 \pi^{2}} \int_{\mathbf{u}, \mathbf{v}} \widetilde{\alpha}_{\mathbf{u}-\mathbf{v}}\left(\mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{x}-\mathbf{v}}+\mathbf{K}_{\mathbf{y}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}}-2 \mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}}\right) \\
& \times \frac{1}{2}\left[\hat{D}_{\mathbf{x}, \mathbf{u}} \hat{D}_{\mathbf{u}, \mathbf{y}}+\hat{D}_{\mathbf{x}, \mathbf{v}} \hat{D}_{\mathbf{v}, \mathbf{y}}-\hat{D}_{\mathbf{x}, \mathbf{y}}-\hat{D}_{\mathbf{v}, \mathbf{u}} \hat{Q}_{\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{y}}\right],
\end{aligned}
$$

- But recall that α_{s} is a slowly varying function of the scale:

$$
\widetilde{\alpha}_{\mathbf{x}-\mathbf{y}} \equiv \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k}) \sim \alpha_{\mathrm{s}} \delta^{2}(\mathbf{x}-\mathbf{y})
$$

$\Longrightarrow \mathbf{u} \approx \mathbf{v}$ and structure simplifies to BK:

$$
\frac{1}{2}\left[\hat{D}_{\mathrm{x}, \mathrm{u}} \hat{D}_{\mathrm{u}, \mathrm{y}}+\hat{D}_{\mathrm{x}, \mathrm{v}} \hat{D}_{\mathrm{v}, \mathrm{y}}-\hat{D}_{\mathrm{x}, \mathrm{y}}-\hat{D}_{\mathrm{v}, \mathrm{u}} \hat{Q}_{\mathrm{x}, \mathrm{v}, \mathrm{u}, \mathrm{y}}\right] \approx \hat{D}_{\mathrm{x}, \mathrm{u}} \hat{D}_{\mathrm{u}, \mathrm{y}}-\hat{D}_{\mathrm{x}, \mathrm{y}}
$$

- Parametrically dominant length scale in coupling is "smallest dipole", just like in Balitsky prescription for BK.

Gluon multiplicity and mean p_{T}

Q_{s} is only dominant scale

$$
\text { Parametrically } \quad \frac{\mathrm{d} N_{g}}{\mathrm{dyd} \mathrm{~d}^{2} \mathbf{x}}=c_{N} \frac{C_{F}}{2 \pi^{2} \alpha_{\mathrm{s}}} Q_{\mathrm{s}}^{2} \quad\left\langle p_{T}\right\rangle \sim Q_{\mathrm{s}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Gluon multiplicity and mean p_{T}

Q_{s} is only dominant scale

$$
\text { Parametrically } \quad \frac{d N_{g}}{d y d^{2} x}=c_{N} \frac{C_{F}}{2 \pi^{2} \alpha_{\mathrm{S}}} Q_{\mathrm{S}}^{2} \quad\left\langle p_{T}\right\rangle \sim Q_{\mathrm{S}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with
energy (Midrapidity, $y \equiv \ln \sqrt{s / s_{0}}$)

Gluon multiplicity and mean p_{T}

Q_{S} is only dominant scale

$$
\text { Parametrically } \quad \frac{\mathrm{d} N_{g}}{\mathrm{~d} y \mathrm{~d}^{2} \mathbf{x}}=c_{N} \frac{C_{\mathrm{F}}}{2 \pi^{2} \alpha_{\mathrm{s}}} Q_{\mathrm{s}}^{2} \quad\left\langle p_{T}\right\rangle \sim Q_{\mathrm{s}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s / s_{0}}$)

Harder gluon spectrum \Longrightarrow higher $\left\langle p_{T}\right\rangle / Q_{\mathrm{s}}$ as scaling regime sets in.
(Still very large lattice cutoff effects.)

