Classical gauge field picture of the initial stage in A+A collisions

T. Lappi

University of Jyväskylä, Finland

Ab-initio approaches in many-body QCD, Heidelberg, December 2014

Outline

- Introduction: CGC, Glasma
- JIMWLK evolution in Langevin form
- Classical Yang-Mills fields in the initial stage T.L., [arXiv:1105.5511], PLB 2011
- Wilson loop in glasma with MV or JIMWLK initial conditions Dumitru, T.L., Nara [arXiv:1401.4124], PLB 2014

Comments:

- ► This talk is purely 2+1d boost-invariant.
- Only $Q_{\rm s} \tau \lesssim 10$
- Starting point for isotropization

Small *x*: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_{s} \gg \Lambda_{QCD}$.

 ${f p}\sim {\it Q}_{
m s}$: strong fields ${\it A}_{\mu}\sim 1/g$

- occupation numbers $\sim 1/\alpha_s$
- classical field approximation.
- small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

 ${f p}\sim {\it Q}_{
m s}$: strong fields ${\it A}_{\mu}\sim 1/g$

- ▶ occupation numbers ~ 1/αs
- classical field approximation.
- small α_s, but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large x = source ρ , **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_{s} \gg \Lambda_{QCD}$.

 ${f p}\sim {\it Q}_{
m s}$: strong fields ${\it A}_{\mu}\sim 1/g$

- ▶ occupation numbers ~ 1/αs
- classical field approximation.
- small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large x = source ρ , **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. JIMWLK: *y*-dependence of $W_y[\rho]$; Langevin implementation

Wilson line

Classical color field described as Wilson line Eikonal propagation of high energy probe in color field: $U(\mathbf{x}) = P \exp \left\{ ig \int dx^{-}A^{+}_{cov}(\mathbf{x}, x^{-}) \right\} \in SU(3)$ Color charge $\rho: \nabla^{2}A^{+}_{cov}(\mathbf{x}, x^{-}) = -g\rho(\mathbf{x}, x^{-})$ ($x^{\pm} = \frac{1}{\sqrt{2}}(t \pm z)$; $A^{\pm} = \frac{1}{\sqrt{2}}(A^{0} \pm A^{z})$; \mathbf{x} 2d transverse)

Qs is characteristic momentum/distance scale

Precise definition used here:

$$egin{aligned} &rac{1}{N_{
m c}}\left\langle \, {
m Tr} \, U^{\dagger}(\mathbf{0}) U(\mathbf{x})
ight
angle &= e^{-rac{1}{2}} \ & \iff \mathbf{x}^2 = rac{2}{Q_{
m c}^2} \end{aligned}$$

JIMWLK evolution

Classical color field described as Wilson line $U(\mathbf{x}) = P \exp\left\{ig \int dx^{-} A^{+}(\mathbf{x}, x^{-})\right\} \in SU(3)$

- Energy dependent **probability** distribution $W_y[U]$ $(y \sim \ln \sqrt{s})$
- Energy/rapidity dependence of W_y[U] given by JIMWLK renormalization group equation

$$\partial_y W_y[U(\mathbf{x})] = \mathcal{H} W_y[U(\mathbf{x})]$$

• Then get all expectation values $\langle U \cdots U^{\dagger} \rangle$

JIMWLK Hamiltonian: (fixed coupling)

$$\mathcal{H} \equiv \frac{1}{2} \alpha_{s} \int_{\mathbf{x}\mathbf{y}\mathbf{z}} \frac{\delta}{\delta A_{c}^{+}(\mathbf{y})} \mathbf{e}^{ba}(\mathbf{x}, \mathbf{z}) \cdot \mathbf{e}^{ca}(\mathbf{y}, \mathbf{z}) \frac{\delta}{\delta A_{b}^{+}(\mathbf{x})},$$
$$\mathbf{e}^{ba}(\mathbf{x}, \mathbf{z}) = \frac{1}{\sqrt{4\pi^{3}}} \frac{\mathbf{x} - \mathbf{z}}{(\mathbf{x} - \mathbf{z})^{2}} \left(1 - U^{\dagger}(\mathbf{x})U(\mathbf{z})\right)^{ba}$$

Langevin formulation

Fokker-Planck => Langevin in JIMWLK Blaizot, Iancu, Weigert 2002

Simple form for Langevin step

$$U_{\mathbf{x}}(y + dy) = \exp\left\{-i\frac{\sqrt{\alpha_{s} dy}}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot (U_{\mathbf{z}}\boldsymbol{\xi}_{\mathbf{z}}U_{\mathbf{z}}^{\dagger})\right\} \times U_{\mathbf{x}}(y)\exp\left\{i\frac{\sqrt{\alpha_{s} dy}}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \boldsymbol{\xi}_{\mathbf{z}}\right\},$$

Noise: $\langle \xi_{\mathbf{x}}(\mathbf{y}_m)_i^a \xi_{\mathbf{y}}(\mathbf{y}_n)_j^b \rangle = \alpha_{\mathbf{s}} \delta^{ab} \delta^{ij} \delta^{(2)}_{\mathbf{x}\mathbf{y}} \delta_{mn}, \quad \xi = \xi^a t^a$

More recent developments not discussed here:

- Fixed \implies running α_s : proposal by T.L., Mäntysaari 2012
- Full NLO Balitsky, Chirilli 2013, Kovner, Lublinsky, Mulian 2014
 - NLO BFKL/BK problematic, treatment for JIMWLK not obvious.

Interpreting JIMWLK: derive BK

$$U_{\mathbf{x}}(y + dy) = e^{-i\frac{\sqrt{\alpha_{s}}dy}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot (U_{\mathbf{z}}\xi_{\mathbf{z}}U_{\mathbf{z}}^{\dagger})} U_{\mathbf{x}}e^{i\frac{\sqrt{\alpha_{s}}dy}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \xi_{\mathbf{z}}}$$

- At dy \rightarrow 0 develop to $\mathcal{O}(\xi^2)$ and take expectation values.
- ► BK Balitsky-Kovchegov is equation for dipole $\hat{D}_{\mathbf{x},\mathbf{y}} = \text{Tr } U^{\dagger}(\mathbf{x})U(\mathbf{y})/N_{c}$
- Contract ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ with one from $U(\mathbf{y})$: real terms

• Contract two ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ or $U(\mathbf{y})$: virtual terms

Result is BK equation:

$$\partial_{y}\hat{D}_{\mathbf{x},\mathbf{y}}(y) = \frac{\alpha_{s}N_{c}}{2\pi^{2}}\int_{\mathbf{z}} \left(\mathbf{K}_{\mathbf{x}-\mathbf{z}}^{2} + \mathbf{K}_{\mathbf{y}-\mathbf{z}}^{2} - 2\mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{z}}\right) \left[\hat{D}_{\mathbf{x},\mathbf{z}}\hat{D}_{\mathbf{z},\mathbf{y}} - \hat{D}_{\mathbf{x},\mathbf{y}}\right].$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ ― 트首 - 외오@

Gluon fields in AA collision

Classical Yang-Mills Change to LC gauge: $A_{(1,2)}^{i} = rac{i}{g} U_{(1,2)}(\mathbf{x}) \partial_{i} U_{(1,2)}^{\dagger}(\mathbf{x})$ $U(\mathbf{x})$ is the same Wilson line A_{μ} (4) $A_{\mu} = 0$

Gluon fields in AA collision

Classical Yang-Mills

Change to LC gauge:

$$A_{(1,2)}^{i} = rac{i}{g} U_{(1,2)}(\mathbf{x}) \partial_{i} U_{(1,2)}^{\dagger}(\mathbf{x})$$

 $U(\mathbf{x})$ is the same Wilson line

At $\tau = 0$:

$$\begin{array}{lll} \left. A^{i} \right|_{\tau=0} &=& A^{i}_{(1)} + A^{i}_{(2)} \\ \left. A^{\eta} \right|_{\tau=0} &=& \frac{ig}{2} [A^{i}_{(1)}, A^{i}_{(2)}] \end{array}$$

Gluon fields in AA collision

Classical Yang-Mills

Change to LC gauge:

$$A_{(1,2)}^{i} = rac{i}{g} U_{(1,2)}(\mathbf{x}) \partial_{i} U_{(1,2)}^{\dagger}(\mathbf{x})$$

 $U(\mathbf{x})$ is the same Wilson line

At $\tau = 0$:

$$\begin{array}{lll} \left. {{{\cal A}^{i}}} \right|_{\tau = 0} & = & {{{\cal A}_{(1)}^{i}} + {{\cal A}_{(2)}^{i}}} \\ \left. {{{\cal A}^{\eta }}} \right|_{\tau = 0} & = & \frac{{ig}}{2}[{{\cal A}_{(1)}^{i}},{{\cal A}_{(2)}^{i}}] \end{array}$$

 $\tau > 0$ Solve numerically Classical Yang-Mills **CYM** equations. This is the **glasma** field \implies Then average over initial Wilson lines.

Fix gauge, Fourier-decompose: gluon spectrum Gluons with $p_T \sim Q_s$ — strings of size $R \sim 1/Q_s$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325

$Q_{\rm s}$ is only dominant scale

Parametrically gluon spectrum

$$\frac{\mathrm{d}N_g}{\mathrm{d}y\,\mathrm{d}^2\mathbf{x}\,\mathrm{d}^2\mathbf{p}} = \frac{1}{\alpha_{\mathrm{s}}}f\left(\frac{p_T}{Q_{\mathrm{s}}}\right)$$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325

*Q*_s is only dominant scale

Parametrically gluon spectrum

$$\frac{\mathrm{d}N_g}{\mathrm{d}y\,\mathrm{d}^2\mathbf{x}\,\mathrm{d}^2\mathbf{p}} = \frac{1}{\alpha_{\mathrm{s}}}f\left(\frac{p_{\mathrm{T}}}{Q_{\mathrm{s}}}\right)$$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325

Produced gluon spectrum: harder at higher \sqrt{s} (Here: midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

Universality in the IR spectrum?

Universality in the IR spectrum?

Gauge inv. probe for $p_T \lesssim Q_s$? Spatial Wilson loop

$$W(A) = rac{1}{N_{
m c}} \operatorname{Tr} \mathbb{P} \exp\left\{ ig \oint_{A} \mathrm{d} \mathbf{x} \cdot \mathbf{A}
ight\}$$

A = area inside loop

2d lattice: transverse links:

$$\uparrow = U_i(\mathbf{x}) = \exp\{igaA_i\}$$

Measure Wilson loops

Dumitru, Nara, Petreska PRD 2013 & Dumitru, T.L., Nara PLB 2014

Calculation is simple: Construct initial glasma fields at τ = 0 using e.g. MV model rcJIMWLK fcJIMWLK (Try to have same Q_s a to minimize lattice effects) Evolve forward in τ

• Measure W(A) (A=area)

Behavior in both UV (AQ_s^2 \lesssim 1) and IR (AQ_s^2 \gtrsim 1) parametrized as

$$\boldsymbol{W} = \exp\left\{-(\boldsymbol{\sigma}\boldsymbol{A})^{\gamma}\right\}$$

Fit is quite good: solid lines in figure.

11/18

Fit to Wilson loop area dependence

 $W = \exp\left\{-(\sigma A)^{\gamma}\right\} \Longleftrightarrow \ln(-\ln W) = \gamma \ln(AQ_{s}^{2}) + \gamma \ln(\sigma/Q_{s}^{2})$

12/18

Wilson loop scaling exponents

UV $(e^{-3.5} < AQ_{\rm s}^2 < e^{-0.5})$

Remembers initial condition

Initial conditions collapse to $\gamma_{\rm IR} pprox$ 1.2, decreasing slowly with au

"String tension" coefficients

In expanding system fields naturally decrease as

$$au \gg 1/Q_{
m s} \implies A_{\mu} \sim 1/\sqrt{ au} \implies \sigma/Q_{
m s}^2 \sim 1/(Q_{
m s} au)$$

Plot "string tension" σ as scaling variable $\sigma \tau / Q_s$

(Note: the numerical value of $\sigma/Q_{\rm s}^{\rm 2}$ depends on the convention used to define $Q_{\rm s}$)

At $\tau = 0: \sigma/Q_s^2 \approx 0.55...0.6$ (UV) and $\sigma/Q_s^2 \approx 0.35...0.45$ (IR)

Magnetic field correlator

Wilson loop measures magnetic flux:

$$W(A) = \frac{1}{N_{\rm c}} \operatorname{Tr} \mathbb{P} \exp\left\{ig \oint_A d\mathbf{x} \cdot \mathbf{A}\right\} = \frac{1}{N_{\rm c}} \operatorname{Tr} \exp\left\{ig \int d^2 \mathbf{x} B_z(\mathbf{x})\right\}$$

If magnetic field consists of uncorrelated Gaussian domains:

$$\langle W(A) \rangle = \exp\left\{-\frac{1}{2}\frac{1}{N_{c}}\operatorname{Tr}\left\langle \left[\int d^{2}\mathbf{x}gB_{z}(\mathbf{x})\right]^{2}\right\rangle\right\}$$

 \implies W(A) related to $\langle B(\mathbf{x})B(\mathbf{y})\rangle$

Here: no gauge fixing, but connect $B(\mathbf{x})$ and $B(\mathbf{y})$ with gauge link

Check: compare

- Direct measurement of W(A)
- Reconstruction from BB-correlator

good agreement.

15/18

Magnetic field correlator

However: no obvious scaling seen in *BB*-correlator

Same on log plot

$$C(|\mathbf{x}-\mathbf{y}|) \equiv \mathsf{Tr}\left< \left[B(\mathbf{x})B(\mathbf{y})
ight]_{\mathsf{gauge link}}
ight
angle$$

Straight line: $\sim (rQ_s)^{-1.55}$.

 $(\text{For } C(r) \sim (rQ_{\text{s}})^{-\alpha} \text{ one would get } \gamma = 2 - \alpha/2 \iff \alpha = 4 - 2\gamma; \\ \text{from } W(A) \text{ measured } \gamma = 1.22)$

Wilson loop fluctuations and eigenvalue distributions

Work in progress, Dumitru, T.L., Nara

How are the Wilson lines distributed in SU(3)?

Fluctuations of ReW and ImW

Eigenvalue λ phase distribution:

For large areas A both look like random SU(3) matrices:

$$\sigma^{2}(\operatorname{Re} W) = \sigma^{2}(\operatorname{Im} W) = \frac{1}{2N_{c}^{2}} \qquad P(\varphi \equiv \operatorname{arg}(\lambda)) = \frac{1}{2\pi} \left(1 + \frac{2}{3}\cos 3\varphi\right)_{17/13}$$

Conclusions

- CYM initial state for AA collision
- Universal behavior in the for $p_T \ll Q_s$ seen in gluon spectrum
- Same universality seen in spatial Wilson loop
 - ► Slightly nontrivial area dependence $W \sim \exp\{-A^{1,2}\}$
- Note: this is still in the boost-invariant 2d theory.
 - Effect of instabilities, isotropization on the soft modes?

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

▶ 1-d diffusion eq. (⊃ F.-P. eq.)

 $\partial_t P(x,t) = D \partial_x^2 P(x,t)$

- P(x, t)=probability for particle to be at location x at time t.
- For x = 0 at t = 0 solution:

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left\{-\frac{x^2}{4Dt}\right\}$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

▶ 1-d diffusion eq. (⊃ F.-P. eq.)

 $\partial_t P(x,t) = D \partial_x^2 P(x,t)$

- P(x, t)=probability for particle to be at location x at time t.
- For x = 0 at t = 0 solution:

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left\{-\frac{x^2}{4Dt}\right\}$$

Langevin equation:

$$\begin{aligned} x(t) &= \sqrt{2D\eta(t)} \\ \langle \eta(t)\eta(t') \rangle &= \delta(t-t') \\ \langle x(t) \rangle &= 0 \\ \langle x^2(t) \rangle &= 2Dt \\ \langle x(t)x(t') \rangle &= 2D\min(t,t') \end{aligned}$$

 \implies same as F.-P.

1d Brownian motion to JIMWLK

- Replace $x \implies U(\mathbf{x})$ and $t \implies y$.
- Constant $D \implies$ nonlinearity (U-dependence) in kernel
- $(N_c^2 1)N_{\perp}^2$ -dimensional nonlinear diffusion equation. $(N_1^2 =$ number of lattice points in transverse plane.)

Scale of running α_s in JIMWLK

BK for $\hat{D}_{\mathbf{x},\mathbf{y}}(y)$ describes dipole splitting $\mathbf{x} - \mathbf{y} \longrightarrow \mathbf{x} - \mathbf{z}$; $\mathbf{z} - \mathbf{y}$

- ▶ α_s given by parent x y: easy in BK, but funny in JIMWLK: Langevin is only for one Wilson line
- Daughter (scale in **K**): easy to implement as $\sqrt{\alpha_s}$, but why?

$$\sqrt{lpha_{s}}\mathbf{K}_{x-z}
ightarrow \sqrt{lpha_{s}(\mathbf{x}-\mathbf{z})}\mathbf{K}_{x-z}$$

- Used in BK: combinations of these two.
- Suggestion T.L., H.Mäntysaari 2012 : natural scale is momentum of radiated gluon.
- Implemented by modifying momentum space noise correlator

$$\begin{split} \langle \xi_{\mathbf{x}}(m)_{i}^{a}\xi_{\mathbf{y}}(n)_{j}^{b}\rangle &\sim \alpha_{s}\delta_{\mathbf{x}\mathbf{y}}^{(2)} = \alpha_{s}\int \frac{\mathrm{d}^{2}\mathbf{k}}{(2\pi)^{2}}e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})} \\ & \Longrightarrow \int \frac{\mathrm{d}^{2}\mathbf{k}}{(2\pi)^{2}}e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})}\alpha_{s}(\mathbf{k}) \end{split}$$

Reinterpreting JIMWLK

$$\begin{split} \mathcal{U}_{\mathbf{x}}(y + \mathrm{d}y) &= \exp\left\{-i\frac{\sqrt{\mathrm{d}y}}{\pi}\int_{\mathbf{z}}\mathbf{K}_{\mathbf{x}-\mathbf{z}}\cdot(\mathcal{U}_{\mathbf{z}}\boldsymbol{\xi}_{\mathbf{z}}\mathcal{U}_{\mathbf{z}}^{\dagger})\right\} \\ &\times \mathcal{U}_{\mathbf{x}}(y) \;\exp\left\{i\frac{\sqrt{\mathrm{d}y}}{\pi}\int_{\mathbf{z}'}\mathbf{K}_{\mathbf{x}-\mathbf{z}'}\cdot\boldsymbol{\xi}_{\mathbf{z}'}\right\}, \end{split}$$

$$\langle \xi_{\mathbf{x}}(m)_{i}^{a}\xi_{\mathbf{y}}(n)_{j}^{b}\rangle \sim \int \frac{\mathrm{d}^{2}\mathbf{k}}{(2\pi)^{2}}e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})}\alpha_{s}(\mathbf{k}) \equiv \widetilde{\alpha}_{\mathbf{x}-\mathbf{y}}$$

- Breaks time-reversal-symmetry: choose scale as momentum of gluon either before or after the target
- Two gluon coordinates instead of one

3/5

Recovering BK

Equation for dipole now involves higher point functions:

$$\begin{split} \partial_{\mathbf{y}}\hat{D} &= \frac{N_{\mathrm{c}}}{2\pi^{2}} \int_{\mathbf{u},\mathbf{v}} \widetilde{\alpha}_{\mathbf{u}-\mathbf{v}} \bigg(\mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{x}-\mathbf{v}} + \mathbf{K}_{\mathbf{y}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}} - 2\mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}} \bigg) \\ &\times \frac{1}{2} \left[\hat{D}_{\mathbf{x},\mathbf{u}} \hat{D}_{\mathbf{u},\mathbf{y}} + \hat{D}_{\mathbf{x},\mathbf{v}} \hat{D}_{\mathbf{v},\mathbf{y}} - \hat{D}_{\mathbf{x},\mathbf{y}} - \hat{D}_{\mathbf{v},\mathbf{u}} \hat{Q}_{\mathbf{x},\mathbf{v},\mathbf{u},\mathbf{y}} \right], \end{split}$$

• But recall that α_s is a slowly varying function of the scale:

$$\widetilde{\alpha}_{\mathbf{x}-\mathbf{y}} \equiv \int \frac{\mathsf{d}^{2}\mathbf{k}}{(2\pi)^{2}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathsf{s}}(\mathbf{k}) \sim \alpha_{\mathsf{s}} \delta^{2}(\mathbf{x}-\mathbf{y})$$

 \implies **u** \approx **v** and structure simplifies to BK:

$$\frac{1}{2}\left[\hat{D}_{\mathbf{x},\mathbf{u}}\hat{D}_{\mathbf{u},\mathbf{y}}+\hat{D}_{\mathbf{x},\mathbf{v}}\hat{D}_{\mathbf{v},\mathbf{y}}-\hat{D}_{\mathbf{x},\mathbf{y}}-\hat{D}_{\mathbf{v},\mathbf{u}}\hat{Q}_{\mathbf{x},\mathbf{v},\mathbf{u},\mathbf{y}}\right]\approx\hat{D}_{\mathbf{x},\mathbf{u}}\hat{D}_{\mathbf{u},\mathbf{y}}-\hat{D}_{\mathbf{x},\mathbf{y}}$$

 Parametrically dominant length scale in coupling is "smallest dipole", just like in Balitsky prescription for BK.

Gluon multiplicity and mean p_T

 $Q_{\rm s}$ is only dominant scale

Parametrically
$$\frac{dN_g}{dy d^2 \mathbf{x}} = c_N \frac{C_F}{2\pi^2 \alpha_s} Q_s^2 \qquad \langle p_T \rangle \sim Q_s$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Gluon multiplicity and mean p_T

Q_s is only dominant scale

Pa

rametrically
$$rac{\mathrm{d}N_g}{\mathrm{d}y\,\mathrm{d}^2\mathbf{x}} = c_N rac{C_{\mathsf{F}}}{2\pi^2 lpha_{\mathsf{s}}} Q_{\mathsf{s}}^2 \qquad \langle p_T
angle \sim Q_{\mathsf{s}}$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

Gluon multiplicity and mean p_T

 $Q_{\rm s}$ is only dominant scale

Para

ametrically
$$rac{\mathrm{d}N_g}{\mathrm{d}y\,\mathrm{d}^2\mathbf{x}} = c_N rac{C_{\mathsf{F}}}{2\pi^2 lpha_{\mathsf{s}}} Q_{\mathsf{s}}^2 \qquad \langle p_T
angle \sim Q_{\mathsf{s}}$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

Harder gluon spectrum \implies higher $\langle p_T \rangle / Q_s$ as scaling regime sets in. (Still very large lattice cutoff effects.)