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Outline

I Introduction: CGC, Glasma
I JIMWLK evolution in Langevin form
I Classical Yang-Mills fields in the initial stage

T.L., [arXiv:1105.5511], PLB 2011

I Wilson loop in glasma with MV or JIMWLK initial conditions
Dumitru, T.L., Nara [arXiv:1401.4124], PLB 2014

Comments:

I This talk is purely 2+1d boost-invariant.
I Only Qsτ . 10
I Starting point for isotropization
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

⇓
p ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative 10-5
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CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y -dependence of Wy [ρ]; Langevin implementation
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Wilson line

Classical color field described as Wilson line
Eikonal propagation of high energy probe in color field:

U(x) = P exp
{

ig
∫

dx−A+
cov(x, x−)

}
∈ SU(3)

Color charge ρ : ∇2A+
cov(x, x−) = −gρ(x, x−)

( x± = 1√
2
(t ± z) ; A± = 1√

2
(A0 ± Az) ; x 2d transverse )

Qs is characteristic momentum/distance scale

Precise definition used here:

1
Nc

〈
Tr U†(0)U(x)

〉
= e−

1
2

⇐⇒ x2 =
2

Q2
s 4 8 16 32 64 128

r/a

0

0.2

0.4
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0.8

1

C
(r

)

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18
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JIMWLK evolution

Classical color field described as Wilson line

U(x) = P exp
{

ig
∫

dx−A+(x, x−)

}
∈ SU(3)

I Energy dependent probability distribution Wy [U] (y ∼ ln
√

s)

I Energy/rapidity dependence of Wy [U] given by JIMWLK
renormalization group equation

∂y Wy [U(x)] = HWy [U(x)]

I Then get all expectation values
〈
U · · ·U†〉

JIMWLK Hamiltonian: (fixed coupling)

H ≡ 1
2
αs

∫
xyz

δ

δA+
c (y)

eba(x, z) · eca(y, z)
δ

δA+
b (x)

,

eba(x, z) =
1√
4π3

x− z
(x− z)2

(
1− U†(x)U(z)

)ba
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Langevin formulation
Fokker-Planck =⇒ Langevin in JIMWLK Blaizot, Iancu, Weigert 2002

Simple form for Langevin step

Ux(y + dy) = exp

{
−i

√
αs dy
π

∫
z

Kx−z · (UzξzU†z )

}

× Ux(y) exp

{
i

√
αs dy
π

∫
z

Kx−z · ξz

}
,

K i
x−z =

(x− z)i

(x− z)2 i = x , y

Noise: 〈ξx(ym)a
i ξy(yn)b

j 〉 = αsδ
abδijδ

(2)
xy δmn, ξ = ξata

More recent developments not discussed here:
I Fixed =⇒ running αs: proposal by T.L., Mäntysaari 2012

I Full NLO Balitsky, Chirilli 2013, Kovner, Lublinsky, Mulian 2014

I NLO BFKL/BK problematic, treatment for JIMWLK not obvious.
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Interpreting JIMWLK: derive BK

Ux(y + dy) = e−i
√

αs dy
π

R
z Kx−z·(UzξzU†z )Uxei

√
αs dy
π

R
z Kx−z·ξz ,

I At dy → 0 develop to O(ξ2) and take expectation values.
I BK Balitsky-Kovchegov is equation for dipole D̂x,y = Tr U†(x)U(y)/Nc

I Contract ξ’s from timestep of U†(x) with one from U(y): real terms
x

z
y

x

z
y

x

z
y

I Contract two ξ’s from timestep of U†(x) or U(y): virtual terms
x

z

x

z

x

z

I Result is BK equation:

∂y D̂x,y(y) =
αsNc

2π2

∫
z

(
K2

x−z + K2
y−z−2Kx−z · Ky−z

)[
D̂x,zD̂z,y − D̂x,y

]
.
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Gluon fields in AA collision

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Change to LC gauge:

Ai
(1,2) =

i
g

U(1,2)(x)∂iU
†
(1,2)(x)

U(x) is the same Wilson line

At

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field =⇒ Then average over initial Wilson lines.

Fix gauge, Fourier-decompose: gluon spectrum
Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs
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Gluon spectrum in the glasma
T.L., Phys.Lett. B703 (2011) 325

Qs is only dominant scale

Parametrically gluon spectrum
dNg

dy d2x d2p
=

1
αs

f
(

pT

Qs

)
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)
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Unintegrated gluon distribution

C(k) =
kT

2

Nc
Tr 〈U(k)U†(k)〉

becomes harder with evolution.
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p

T
/Q
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p T
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N
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2 p T

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

Produced gluon spectrum:
harder at higher

√
s

(Here: midrapidity, y ≡ ln
p

s/s0)
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Universality in the IR spectrum?

0.25 1 4 16
p

T
/Q

s

adj
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p T

2  d
N

/d
2 p T

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

I Gluon spectrum in the UV
depends on anomalous
dimension =⇒ different for
MV (y = 0) , JIMWLK (y > 0)

I IR seems to scale, close to

dN
d2p

∼ 1
pT

Gauge inv. probe for pT . Qs?
Spatial Wilson loop

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dx · A

}
A = area inside loop

2d lattice: transverse links:

= Ui (x) = exp {igaAi}

W (A) =
1

Nc
Tr
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Measure Wilson loops
Dumitru, Nara, Petreska PRD 2013 & Dumitru, T.L., Nara PLB 2014

Calculation is simple:
I Construct initial glasma fields

at τ = 0 using e.g.
I MV model
I rcJIMWLK
I fcJIMWLK

(Try to have same Qsa to minimize
lattice effects)

I Evolve forward in τ
I Measure W (A) (A=area)

0.1 1 10 100
AQ

s

2

0
0.

2
0.

4
0.

6
0.

8
1

W

JIMWLK Q
s
τ = 0

JIMWLK Q
s
τ = 2 ... 10

MV Q
s
τ = 0

MV Q
s
τ = 2 ... 10

Behavior in both UV (AQ2
s . 1) and IR (AQ2

s & 1) parametrized as

W = exp {−(σA)γ}

Fit is quite good: solid lines in figure.
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Fit to Wilson loop area dependence

W = exp {−(σA)γ} ⇐⇒ ln(− ln W ) = γln(AQ2
s ) + γ ln(σ/Q2

s )

0.1 1 10
AQ

s

2

-10

-5

0

ln
(-

ln
(W

))

MV Q
s
τ = 0

MV Q
s
τ = 1 ... 5

rc-J Q
s
τ = 0

rc-J Q
s
τ = 1 ... 5

fc-J Q
s
τ = 0

fc-J Q
s
τ = 1 ... 5

Main observations
I UV (small loop): initial slope γ stays
I IR (big loop): all init. conditions collapse to universal behavior
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Wilson loop scaling exponents

0 2 4 6 8 10
Q

s
τ

1
1.

2
1.

4
1.

6
1.

8
γ U

V

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

UV (e−3.5 < AQ2
s < e−0.5)

Remembers initial condition

0 2 4 6 8 10
Q

s
τ

0.
6

0.
8

1
1.

2
1.

4
γ IR

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

IR (e0.5 < AQ2
s < e5)

Initial conditions collapse to
γIR ≈ 1.2,

decreasing slowly with τ
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“String tension” coefficients

In expanding system fields naturally decrease as

τ � 1/Qs =⇒ Aµ ∼ 1/
√
τ =⇒ σ/Q2

s ∼ 1/(Qsτ)

Plot “string tension” σ as scaling variable στ/Qs

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
τσ

/Q
s (

U
V

)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

UV: initial conditions differ

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
τσ

/Q
s (

IR
)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

IR: even σ universal within ∼ 10%

(Note: the numerical value of σ/Q2
s depends on the convention used to define Qs)

At τ = 0: σ/Q2
s ≈ 0.55 . . . 0.6 (UV) and σ/Q2

s ≈ 0.35 . . . 0.45 (IR)
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Magnetic field correlator
Wilson loop measures magnetic flux:

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dx · A

}
=

1
Nc

Tr exp
{

ig
∫

d2xBz(x)

}
If magnetic field consists of uncorrelated Gaussian domains:

〈W (A)〉 = exp

{
−1

2
1

Nc
Tr

〈[∫
d2xgBz(x)

]2
〉}

=⇒ W (A) related to 〈B(x)B(y)〉
Here: no gauge fixing, but connect B(x) and B(y) with gauge link

Check: compare
I Direct measurement of W (A)

I Reconstruction from
BB-correlator

good agreement.
0.1 1 10

Q
s
A/τ

0
0.

5
1

1.
5

2
W

Q
sA

/τ

MV, 1024
2
, Q

s
τ = 10

BB
MV, 2048

2
, Q

s
τ = 5

BB
rcJ, 1024, Q

s
τ = 10

BB
rcJ, 2048

2
, Q

s
τ = 5

BB
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Magnetic field correlator

However: no obvious scaling
seen in BB-correlator

0 1 2 3
Q

s
r

-2

0

2

4

6

8

rC
B
(r

)/
Q

s3

MV, Q
s
τ = 0

MV, Q
s
τ = 10 (x 100)

rc JIMWLK, Q
s
τ = 0

rc JIMWLK, Q
s
τ = 10 (x 100)

Same on log plot

C(|x−y|) ≡ Tr
〈

[B(x)B(y)]gauge link

〉

0.5 1 2 4
Q

s
r

1e
-0

7
1e

-0
6

1e
-0

5
C

B
(r

)

MV
rc JIMWLK
fc JIMWLK
~ (rQ

s
)
-1.55

Straight line: ∼ (rQs)−1.55.

(For C(r) ∼ (rQs)−α one would get γ = 2− α/2⇐⇒ α = 4− 2γ;
from W (A) measured γ = 1.22)
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Wilson loop fluctuations and eigenvalue distributions
Work in progress, Dumitru, T.L., Nara

How are the Wilson lines distributed in SU(3)?

Fluctuations of ReW and ImW

10 100
AQ

s

2

0
0.

5
1

1.
5

2 
N

c2
σ2

Re W
Im W

Eigenvalue λ phase distribution:

-3 -2 -1 0 1 2 3
arg(λ)

0

1

2

P(
ar

g(
λ)

)

AQ
s

2
 = 1.4

AQ
s

2
 = 17

AQ
s

2
 = 50

For large areas A both look like random SU(3) matrices:

σ2(ReW ) = σ2(ImW ) =
1

2Nc
2 P(ϕ ≡ arg(λ)) =

1
2π

(
1 +

2
3

cos 3ϕ
)
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Conclusions

I CYM initial state for AA collision
I Universal behavior in the for pT � Qs seen in gluon spectrum
I Same universality seen in spatial Wilson loop

I Slightly nontrivial area dependence W ∼ exp{−A1.2}
I Note: this is still in the boost-invariant 2d theory.

I Effect of instabilities, isotropization on the soft modes?
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Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion
I 1-d diffusion eq. (⊃ F.-P. eq.)

∂tP(x , t) = D∂2
x P(x , t)

I P(x , t)=probability for particle
to be at location x at time t .

I For x = 0 at t = 0 solution:

P(x , t) =
1√

4πDt
exp

{
− x2

4Dt

}

I Langevin equation:
x(t) =

√
2Dη(t)

〈η(t)η(t ′)〉 = δ(t − t ′)
I 〈x(t)〉 = 0

〈x2(t)〉 = 2Dt
〈x(t)x(t ′)〉 = 2Dmin(t , t ′)

=⇒ same as F.-P.

1d Brownian motion to JIMWLK
I Replace x =⇒ U(x) and t =⇒ y .
I Constant D =⇒ nonlinearity (U-dependence) in kernel
I (Nc

2 − 1)N2
⊥-dimensional nonlinear diffusion equation.

(N2
⊥= number of lattice points in transverse plane.)
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Scale of running αs in JIMWLK

BK for D̂x,y(y) describes dipole splitting x− y −→ x− z ; z− y

I αs given by parent x− y: easy in BK, but funny in JIMWLK:
Langevin is only for one Wilson line

I Daughter (scale in K): easy to implement as
√
αs, but why?

√
αsKx−z →

√
αs(x− z)Kx−z

I Used in BK: combinations of these two.
I Suggestion T.L., H.Mäntysaari 2012 : natural scale is momentum of

radiated gluon.
I Implemented by modifying momentum space noise correlator

〈ξx(m)a
i ξy(n)b

j 〉 ∼ αsδ
(2)
xy = αs

∫
d2k

(2π)2 eik·(x−y)

=⇒
∫

d2k
(2π)2 eik·(x−y)αs(k)
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Reinterpreting JIMWLK

Ux(y + dy) = exp

{
−i

√
dy
π

∫
z

Kx−z · (UzξzU†z )

}

× Ux(y) exp

{
i

√
dy
π

∫
z′

Kx−z′ · ξz′

}
,

〈ξx(m)a
i ξy(n)b

j 〉 ∼
∫

d2k
(2π)2 eik·(x−y)αs(k) ≡ α̃x−y

x

z
y

z′
k

x
z′

y
z

k
x
z′

y
z

k

x

z
z′

k

x

z
z′ k

x

z
z′ k

I Breaks time-reversal-symmetry: choose scale as momentum of
gluon either before or after the target

I Two gluon coordinates instead of one
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Recovering BK

I Equation for dipole now involves higher point functions:

∂y D̂ =
Nc

2π2

∫
u,v
α̃u−v

(
Kx−u ·Kx−v +Ky−u ·Ky−v−2Kx−u ·Ky−v

)
× 1

2

[
D̂x,uD̂u,y + D̂x,vD̂v,y − D̂x,y − D̂v,uQ̂x,v,u,y

]
,

I But recall that αs is a slowly varying function of the scale:

α̃x−y ≡
∫

d2k
(2π)2 eik·(x−y)αs(k) ∼ αsδ

2(x− y)

=⇒ u ≈ v and structure simplifies to BK:

1
2

[
D̂x,uD̂u,y + D̂x,vD̂v,y − D̂x,y − D̂v,uQ̂x,v,u,y

]
≈ D̂x,uD̂u,y − D̂x,y

I Parametrically dominant length scale in coupling is “smallest
dipole”, just like in Balitsky prescription for BK.
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Gluon multiplicity and mean pT

Qs is only dominant scale

Parametrically
dNg

dy d2x
= cN

CF

2π2αs
Q2

s 〈pT 〉 ∼ Qs

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.
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regime sets in.
(Still very large lattice cutoff effects.)
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