Finite-temperature Effective Field Theories for quarkonia

Jacopo Ghiglieri, Institute for Theoretical Physics Albert Einstein Center, University of Bern

AIAIMBQCDCHIE, Heidelberg, 16.12.2014

Quarkonium as a hard probe

J/ ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION \star

T. MATSUI

Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

H. SATZ

Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986

- Colour screening leads to the disappearance of the bound state
- A suppressed J/ψ yield is observed in the dilepton channel
 Matsui Satz PLB178 (1986)

Matsui/Satz: dissociation induced by colour screening of the interaction

Matsui/Satz: dissociation induced by colour screening of the interaction

• Matsui/Satz: dissociation induced by colour screening of the interaction

 Since then, dissociation has been studied with potential models, lattice spectral functions, AdS/CFT and now with EFTs

Quarkonium suppression in experiments

• Typical observable: the nuclear modification factor

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp} \times N_{bin}}$$

- $R_{AA} \neq 1 \Rightarrow$ deviations from binary scaling. Causes:
 - Cold Nuclear Matter effects (affect production and early stages).
 - Hot Medium effects, such as screening. Reduce
 R_{AA}
 - Recombination effects. Increase R_{AA}

- We have a system characterized by many scales and degrees of freedom
- With EFTs we can
 - Have a clear counting
 - Integrate out unnecessary DOFs
 - Obtain an effective description with potentials rigorously obtained from QCD, including all relevant effects for the desired accuracy

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n (\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n (\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

 The Wilson coefficient are obtained by matching Green's functions in the two theories

$$\mathcal{L}_{\rm EFT} = \sum_{n} c_n (\mu/\Lambda) \frac{O_n}{\Lambda^{d_n - 4}} \underbrace{ \begin{array}{c} \text{Low-energy} \\ \text{operator/} \\ \text{operator/} \\ \text{large scale} \end{array} }$$

- The Wilson coefficient are obtained by matching Green's functions in the two theories
- The procedure can be iterated $\ldots \ll \mu_2 \ll \Lambda_2 \ll \mu_1 \ll \Lambda_1$

At zero temperature

 Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum transfer and kinetic/binding energy scales

At zero temperature

- Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum transfer and kinetic/binding energy scales
- Expand observables in terms of the ratio of the scales, *v*

At zero temperature

- Non-relativistic QQ bound states are characterized by the hierarchy of the mass, momentum transfer and kinetic/binding energy scales
- Expand observables in terms of the ratio of the scales, *v*
- Construct a *hierarchy of EFTs*.
 Equivalent to QCD order-by-order in the expansion parameter

Integrating out the mass scale: Non-Relativistic QCD (NRQCD)

- The mass is integrated out and the theory becomes non-relativistic
- Factorization between contributions from the scale *m* and from lower-energies
- Ideal for production and decay studies

$$\mathcal{L}_{\text{NRQCD}} = \sum_{n} c_n (\mu/m) \frac{O_n}{m^{d_n - 4}}$$

Caswell Lepage **PLB167** (1986) Bodwin Braaten Lepage **PRD51** (1995)

The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined

The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined
- At weak coupling, $Q\overline{Q}$ DOFs are cast into colour-singlet and octet

 $\mathcal{L} = \mathcal{L}_{\text{light}} + \text{Tr}\left\{\mathbf{S}^{\dagger}\left[i\partial_{0} + \frac{\nabla^{2}}{m} - V_{s}\right]\mathbf{S} + \mathbf{O}^{\dagger}\left[iD_{0} + \frac{\nabla^{2}}{m} - V_{o}\right]\mathbf{O}\right\}$ $+ \text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{S} + \mathbf{S}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O}\right\} + \frac{1}{2}\text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O} + \mathbf{O}^{\dagger}\mathbf{O}\mathbf{r} \cdot g\mathbf{E}\right\} + \dots$

Pineda Soto **NPPS64** (1998) Brambilla Pineda Soto Vairo **NPB566** (2000)

The scale mv: potential NRQCD (pNRQCD)

- Modes with momentum *mv* are integrated out
- This gives rise to non-local four-fermion operators. Their Wilson coefficients are the potentials, rigorously defined
- At weak coupling, $Q\overline{Q}$ DOFs are cast into colour-singlet and octet

 $\mathcal{L} = \mathcal{L}_{\text{light}} + \text{Tr}\left\{\mathbf{S}^{\dagger}\left[i\partial_{0} + \frac{\nabla^{2}}{m} - V_{s}\right]\mathbf{S} + \mathbf{O}^{\dagger}\left[iD_{0} + \frac{\nabla^{2}}{m} - V_{o}\right]\mathbf{O}\right\}$ $+ \text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{S} + \mathbf{S}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O}\right\} + \frac{1}{2}\text{Tr}\left\{\mathbf{O}^{\dagger}\mathbf{r} \cdot g\mathbf{E}\mathbf{O} + \mathbf{O}^{\dagger}\mathbf{O}\mathbf{r} \cdot g\mathbf{E}\right\} + \dots$

Pineda Soto **NPPS64** (1998) Brambilla Pineda Soto Vairo **NPB566** (2000)

Applications of pNRQCD

- Spectroscopy
- Extraction of SM parameters (m_c , m_b , α_s)
- Comparisons of lattice and perturbation theory
- ttbar threshold production
- Reviews Brambilla *et al.* EPJC71 (2011) EPJC74 (2014)

Applications to quarkonia in HIC

- Production (NRQCD Vitev Sharma PRC87 2013, NRQCD+CGC with outlook to AA Kang Ma Venugopalan 2013-14)
- In-medium evolution (NRQCD, pNRQCD and variants)
 - Both perturbation theory and lattice studies

Bring in the medium

- The thermal medium introduces new scales in the physical problem
 - The temperature
 - The electric screening scale (Debye mass)
 - The magnetic screening scale (magnetic mass)
- In the weak coupling assumption these scales develop a hierarchy

Bring in the medium

 $g^2T\sim m_m$ -

- The thermal medium introduces new scales in the physical problem
 - The temperature
 - The electric screening scale (Debye mass) $gT \sim m_D$.
 - The magnetic screening scale (magnetic mass)
- In the weak coupling assumption these scales develop a hierarchy

Finite-temperature NR EFT how-to

 $m \gg mv \sim m\alpha_{\rm s} \sim \langle 1/r \rangle \gg mv^2 \sim m\alpha_{\rm s}^2 \sim E$? $T \gg m_D \sim gT \gg m_m \sim g^2 T$

- Assume a global hierarchy between the bound-state and thermodynamical scales
- Many different possibilities have been considered in the relevant macroregions $T \ll mv$, $T \sim mv$ and $T \gg mv$ (with $T \ll m$)
- Proceed from the top to systematically integrate out each scale, creating a tower of EFTs. Make use of existing EFTs (*T*=0 NR EFTs, finite *T* EFTs such as HTL)
- Once the scale *mv* has been integrated out the colour singlet and octet potentials appear. They are always complex

The complex potential

• Laine Philipsen Romatschke Tassler JHEP0703 (2007) : analytical continuation of Wilson loop to large real time yields a complex potential in HTL-resummed PT

$$V_{\rm HTL}(T \gg 1/r, m_D) = -C_F \alpha_{\rm s} \left(\frac{e^{-m_D r}}{r} + m_D - \frac{i}{m_D r} f(m_D r)\right)$$

• Re $V \Rightarrow$ screening. Im $V \Rightarrow$ width induced by collisions with the medium. Im V >> Re V

 In the EFT: compact real-time derivation, extension to other regimes Brambilla JG Petreczky Vairo PRD78 (2008)

The dissociation temperature

• Given the potential for $T >> 1/r >> m_D$

$$V_s(r) = -C_F \frac{\alpha_s}{r} - \frac{C_F}{2} \alpha_s r m_D^2 - \frac{i}{6} \frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(-2\gamma_E - \ln(rm_D)^2 + \frac{8}{3} \right) + \dots$$

- When $T \sim m \alpha_s^{2/3} \Rightarrow \text{Im}V \sim \text{Re}V$ Dissociation temperature Escobedo Soto PRA78 (2008) Laine 0810.1112 (2008)
- Quantitatively, for the $\Upsilon(1S)$

$m_c \; ({\rm MeV})$	T_d (MeV)
∞	480
5000	480
2500	460
1200	440
0	420

Escobedo Soto PRA82 (2010)

- When *mv>>T>>mv*² the thermal medium acts as a perturbation to the potential.
 Relevant for the ground states of bottomonium: *mα*_s ~ 1.5GeV, *T* < 1GeV
- The EFT obtained by integrating out the temperature from pNRQCD is called pNRQCD_{HTL} $\mathcal{L}_{pNRQCD_{HTL}} = \mathcal{L}_{HTL} + Tr \left\{ S^{\dagger} [i\partial_0 - h_s - \delta V_s] S + O^{\dagger} [iD_0 - h_o - \delta V_o] O \right\}$ $+ Tr \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O \right\} + \frac{1}{2} Tr \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O + O^{\dagger} O \mathbf{r} \cdot g \mathbf{E} \right\} + \dots$ Brambilla Escobedo JG Soto Vairo JHEP1009 (2010) Brambilla Escobedo JG Vairo JHEP1107 (2011)

- Within this theory we computed the spectrum and the thermal width of the Y(1S) to order $m\alpha_s^5$ in the power counting of the EFT
- We must evaluate loop diagrams in the EFTs

$$\Gamma_{1S} = \frac{1156}{27} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ -\frac{4}{3} \alpha_{\rm s} a_0^2 T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ -\frac{32\pi}{3} \ln 2 \ a_0^2 \alpha_{\rm s}^2 T^3$$

$$E_1 = -\frac{4}{9}m\alpha_s^2, \qquad a_0 = \frac{3}{2m\alpha_s}$$

$$\Gamma_{1S} = \frac{1156}{27} \alpha_{s}^{3} T + \frac{7225}{162} E_{1} \alpha_{s}^{3}$$

$$-\frac{4}{3} \alpha_{s} a_{0}^{2} T m_{D}^{2} \left(\ln \frac{E_{1}^{2}}{T^{2}} + 2\gamma_{E} - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right)$$

$$-\frac{32\pi}{3} \ln 2 \ a_{0}^{2} \alpha_{s}^{2} T^{3}$$

$$E_{1} = -\frac{4}{9} m \alpha_{s}^{2}, \qquad a_{0} = \frac{3}{2m \alpha_{s}}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping

$$\begin{split} \Gamma_{1S} &= \frac{1156}{27} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ &- \frac{4}{3} \alpha_{\rm s} a_0^2 T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ &- \frac{32\pi}{3} \ln 2 \ a_0^2 \alpha_{\rm s}^2 T^3 \\ \hline E_1 &= -\frac{4}{9} m \alpha_{\rm s}^2, \qquad a_0 = \frac{3}{2m \alpha_{\rm s}} \end{split}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping

$$\begin{split} \Gamma_{1S} &= \frac{1156}{27} \alpha_{\rm s}^3 T + \frac{7225}{162} E_1 \alpha_{\rm s}^3 \\ &- \frac{4}{3} \alpha_{\rm s} a_0^2 T m_D^2 \left(\ln \frac{E_1^2}{T^2} + 2\gamma_E - 3 - \log 4 - 2 \frac{\zeta'(2)}{\zeta(2)} - \frac{8}{3} I_{1S} \right) \\ &- \frac{32\pi}{3} \ln 2 \ a_0^2 \alpha_{\rm s}^2 T^3 \\ \hline E_1 &= -\frac{4}{9} m \alpha_{\rm s}^2, \qquad a_0 = \frac{3}{2m \alpha_{\rm s}} \end{split}$$

- The leading contribution is linear in the temperature
- Two mechanisms: singlet-to-octet thermal breakup and Landau damping

NRQCD on the lattice

• Extraction of the $b\overline{b}$ spectral function from lattice NRQCD with MEM. Mass shifts and widths are obtained by fitting

- Consistent with our LO predictions for $\alpha_s = 0.4$, $m_b = 5 \text{ GeV}$ Aarts *et al.* JHEP1111 (2011).
- More lattice NRQCD in Peter's talk

The complex potential at strong coupling

 Extraction of a complex static potential from Euclidean Wilson loops or correlators through novel Bayesian methods Rothkopf Hatsuda Sasaki PRL108 Burnier Rothkopf 2012-14 Burnier Kaczmarek Rothkopf 2014

$$W(\tau) = \int d\omega e^{-\omega\tau} \rho(\omega) \, \leftrightarrow \, \int d\omega e^{-i\omega t} \rho(\omega) = W(t),$$

• Two processes have been considered in the literature: $gluo-dissociation (g + \Psi \rightarrow (Q\overline{Q})_8)$ and *elastic dissociation* $((g, q, \overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g, q, \overline{q}))$

 $(g,q,\overline{q}) + \Psi \to (Q\overline{Q})_8 + (g,q,\overline{q})$

• Two processes have been considered in the literature: $gluo-dissociation (g + \Psi \rightarrow (Q\overline{Q})_8)$ and *elastic dissociation* $((g, q, \overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g, q, \overline{q}))$

^رودودودودودود

 $g + \Psi \rightarrow (Q\overline{Q})_8 \qquad (g,q,\overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g,q,\overline{q})$ ■ In both cases the width is obtained by convoluting the (zero-temperature) *dissociation cross section* with a thermal distribution for the incoming light particle $\int_{0}^{1} d^3q$

$$\Gamma = \sum_i \int rac{d^3 q}{(2\pi)^3} f_i(q,T) \,\sigma(q) \, v_{
m rel}$$

Kharzeev Satz **PLB334** (1994) Xu Kharzeev Satz Wang **PRC53** (1996) Grandchamp Rapp **PLB523** (2001)

 $g + \Psi \rightarrow (Q\overline{Q})_8$ Singlet-to-octet corresponds to *gluodissociation*. The old Bhanot-Peskin cross section is a limiting case of ours. Bhanot Peskin NPB156 (1979) Brambilla Escobedo JG Vairo **JHEP1112** (2011) Brezinski Wolschin **PLB707** (2011)

 $(g,q,\overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g,q,\overline{q})$

• Landau damping corresponds to elastic parton scattering. Clarification of validity regions in both cases Brambilla Escobedo JG Vairo JHEP1305 (2013)

 $g + \Psi \rightarrow (Q\overline{Q})_8$ Singlet-to-octet corresponds to *gluodissociation*. The old Bhanot-Peskin cross section is a limiting case of ours. Bhanot Peskin NPB156 (1979) Brambilla Escobedo JG Vairo **JHEP1112** (2011) Brezinski Wolschin **PLB707** (2011)

 $(g,q,\overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g,q,\overline{q})$

• Landau damping corresponds to elastic parton scattering. Clarification of validity regions in both cases Brambilla Escobedo JG Vairo JHEP1305 (2013)

 $g + \Psi \rightarrow (Q\overline{Q})_8$ Singlet-to-octet corresponds to *gluodissociation*. The old Bhanot-Peskin cross section is a limiting case of ours. Bhanot Peskin NPB156 (1979) Brambilla Escobedo JG Vairo **JHEP1112** (2011) Brezinski Wolschin **PLB707** (2011)

 $(g,q,\overline{q}) + \Psi \rightarrow (Q\overline{Q})_8 + (g,q,\overline{q})$

• Landau damping corresponds to elastic parton scattering. Clarification of validity regions in both cases Brambilla Escobedo JG Vairo JHEP1305 (2013)

Interpreting the imaginary part

- Irrespective of any perturbative mechanism, this thermal width is not for decay into light stuff.
 Conserves HQ number and exists in the static limit
- It encodes the decoherence effect caused by the medium on the bound state wavefunction
- Open quantum system interpretation: correlators may decay exponentially, wave function (norm) may not Akamatsu, Rothkopf 2011-14

 $W(r,t) \approx \langle S(r,t)S^{\dagger}(r,0) \rangle \rightarrow Z \exp(-iV(r)t)$

An EFT application

- Recent results by Brambilla Escobedo Soto Vairo, presented by M. Escobedo at ConfXI
- Evolution equations for singlet and octet fields, with EFT Hamiltonians

$$f_{s}(x,y) = Tr(\rho S^{\dagger}(x)S(y))$$

$$H = \frac{H_{eff} + H_{eff}^{\dagger}}{2}$$

$$\Gamma = i(H_{eff} - H_{eff}^{\dagger})$$

$$\partial_{t}f_{s} = -i[H, f_{s}] - \frac{1}{2}\{\Gamma, f_{s}\} + \mathcal{F}(f_{o}) \qquad \partial_{t}f_{o} = -i[H_{o}, f_{o}] - \frac{1}{2}\{\Gamma, f_{o}\} + \mathcal{F}_{1}(f_{s}) + \mathcal{F}_{2}(f_{o})$$

- HQ number conservation $\partial_t Tr(f_s) + \partial_t Tr(f_o) = 0$
- Numerical solution by using the Lindblad form Akamatsu 2014

$$\partial_t \rho = -i[H,\rho] + \sum_k (C_k \rho C_k^{\dagger} - \frac{1}{2} \{C_k^{\dagger} C_k,\rho\})$$

An EFT application

- First numerical results within a simple fireball, no CNM, no feeddown, simple initial conditions
- Screening only, R_{AA} for $\Upsilon(1S)$ (number of 1S states)

An EFT application

- First numerical results within a simple fireball, no CNM, no feeddown, simple initial conditions
- Width and transitions, R_{AA} for $\Upsilon(1S)$

Conclusions

- Lessons from the EFT framework
 - Systematically take into account corrections and include all medium effects
 - Give a rigorous QCD derivations of the potential, bridging the gap with potentials models which appear as leading-order picture here
 - Importance and interpretation of the complex potential
 - Nonperturbative extensions and applications (Peter's talk)

Discussion

MAGNETIC PISCUSSION

bruistoushel.

Photons and dileptons

• Full lines: NLO calculation valid at small K^2 JG Moore (2014)

• Dashed lines: combination of the above with NLO calculation valid at large K2 Ghisoiu Laine (2014) Laine (2013)

Photons and dileptons

- Full lines: NLO calculation valid at small K^2 JG Moore (2014)
- Dashed lines: combination of the above with NLO calculation valid at large K2 Ghisoiu Laine (2014) Laine (2013)

EFTs at finite temperature

 Dependence on the relative velocity of quarkonium and medium Escobedo Giannuzzi Mannarelli Soto PRD87 (2013)

Quasi-free cross section, quark contribution

Brambilla Escobedo JG Vairo JHEP1305 (2013)

- Thermodynamical free energies obtained from Polyakov loops are widely used and measured on the lattice
- We have studied the correlator of Polyakov loops and the associated colour-average free energy $\langle \text{Tr}L^{\dagger}(\mathbf{0})\text{Tr}L(\mathbf{r}) \rangle = e^{-\frac{F_Q\overline{Q}(r,T)}{T}}$

- Thermodynamical free energies obtained from Polyakov loops are widely used and measured on the lattice
- We have studied the correlator of Polyakov loops and the associated colour-average free energy $\langle \text{Tr}L^{\dagger}(\mathbf{0})\text{Tr}L(\mathbf{r})\rangle = e^{-\frac{F_Q\overline{Q}(r,T)}{T}}$
- We have shown that, with pNRQCD in imaginary time, it can be decomposed at short distances into gauge-invariant colour-singlet and octet free energies

- Thermodynamical free energies obtained from Polyakov loops are widely used and measured on the lattice
- We have studied the correlator of Polyakov loops and the associated colour-average free energy $\langle \text{Tr}L^{\dagger}(\mathbf{0})\text{Tr}L(\mathbf{r}) \rangle = e^{-\frac{F_Q\overline{Q}(r,T)}{T}}$
- We have shown that, with pNRQCD in imaginary time, it can be decomposed at short distances into gauge-invariant colour-singlet and octet free energies
- These free energies are quantitatively different from the realtime potentials

 $\operatorname{Im}(F) = 0, \operatorname{Im}(V) \neq 0 \quad \operatorname{Re}(F) \neq \operatorname{Re}(V)$

Brambilla JG Petreczky Vairo PRD82 (2010)

• These free energies are quantitatively different from the potentials

 $\operatorname{Im}(F) = 0, \operatorname{Im}(V) \neq 0 \quad \operatorname{Re}(F) \neq \operatorname{Re}(V)$

• Intuitively $t \to \infty \neq it = \frac{1}{T}$

 Extra divergences can arise for observables spanning the entire imaginary axis
 Berwein Brambilla JG Vairo JHEP1303 (2013)