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Quarkonium as a hard probe

• Colour screening leads to the disappearance of 
the bound state

• A suppressed J/ψ yield is observed in the 
dilepton channel
Matsui Satz PLB178 (1986)
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If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents ce binding 
in the deconfined interior of  the interaction region. To study this effect, the temperature dependence of  the screening radius, as 
obtained from lattice QCD, is compared with the J/q/radius calculated in charmonium models. The feasibility to detect this effect 
clearly in the dilepton mass spectrum is examined. It is concluded that J/~, suppression in nuclear collisions should provide an 
unambiguous signature ofquark-gluon plasma formation. 

Statistical QCD predicts that strongly interacting 
matter should at sufficiently high density undergo a 
transition from hadronic matter to quark-gluon 
plasma ~ . It is hoped that energetic nuclear colli- 
sions will allow us to study this transition in the lab- 
oratory :2. The experimental detection of plasma 
formation thus becomes crucial: what observable sig- 
natures does the predicted new form of matter 
provide? 

Signatures proposed so far include ~3 real or virtual 
photons, the Pa- distribution of secondary hadrons, 
and the relative production rate of strange particles. 
Non-thermal processes as well as uncertainties in the 
plasma evolution do, however, lead to considerable 
ambiguity for the signals considered up to now. We 
want to present here another type of signature for 
plasma formation, which directly reflects deconfine- 
ment and appears to provide a rather clear and 
model-independent test. 

* This manuscript has been authored under contract number DE- 
AC02-76CH00016 with the US Department of Energy. 

:~ For a recent survey see ref. [ 1 ]. 
:2 Fora recent survey see ref. [2]. 
:3 For surveys see ref. [ 3 ]. 
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The basic mechanism for deconfinement in dense 
matter is the Debye screening of the quark colour 
charge [4]. When the screening radius rD becomes 
less than the binding radius rH of the quark system, 
i.e., less than the hadron radius, the confining force 
can no longer hold the quarks together and hence 
deconfinement sets in. We shall investigate here the 
effect of such a deconfining medium on the binding 
ofc  and e quarks into J/~u mesons. 
The temperature dependence of the colour screening 
radius was recently studied in SU (2) [ 5 ] and SU (3) 
[6] gauge theory. There, one considers the interac- 
tion of a static quark-antiquark system in a purely 
gluonic thermal environment. The absence of 
dynamical quarks does, of course, change the screen- 
ing phenomenon considerably [ 5 ]: since the quarks 
transform according to the fundamental representa- 
tion of the colour gauge group and the gluons accord- 
ing to the adjoint, the quark colour charge cannot be 
screened directly. Nevertheless, the quark interac- 
tion is mediated by gluons, and at high temperature 
the dominant contribution will come from the 
exchange of one gluon, made massive by gluonic col- 
our screening. Moreover, we expect that the intro- 

0370-2693/86/$ 03.50 © Elsevier Science Publishers B.V. 
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Overview of dissociation
• Matsui/Satz: dissociation induced by colour 

screening of the interaction

V (r) ⇥ ��s
e�mDr

r

• Since then, dissociation has been studied with 
potential models, lattice spectral functions, 
AdS/CFT and now with EFTs

r � 1
mD

Bound state
dissolves



• Typical observable: the nuclear modification factor

• RAA≠1⇒ deviations from binary scaling. Causes:

• Cold Nuclear Matter effects (affect production 
and early stages). 

• Hot Medium effects, such as screening. Reduce 
RAA

• Recombination effects. Increase RAA

Quarkonium suppression in 
experiments

RAA =
YieldAA

Yieldpp ⇥Nbin



Why EFTs?
• We have a system characterized by many scales and 

degrees of freedom

• With EFTs we can

• Have a clear counting 

• Integrate out unnecessary DOFs

• Obtain an effective description with potentials 
rigorously obtained from QCD, including all 
relevant effects for the desired accuracy
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Why EFTs?
• An EFT is constructed by integrating out modes 

of energy and momentum larger than the cut-
off (#≪Λ)

• The Wilson coefficient are obtained by matching Green’s 
functions in the two theories

• The procedure can be iterated 

Wilson coefficient

Low-energy 
operator/
large scale         

LEFT =
�

n

cn(µ/�)
On

�dn�4

. . .� µ2 � �2 � µ1 � �1



At zero temperature



• Non-relativistic        bound states are 
characterized by the hierarchy of 
the mass, momentum transfer 
and kinetic/binding energy scales
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• Non-relativistic        bound states are 
characterized by the hierarchy of 
the mass, momentum transfer 
and kinetic/binding energy scales

• Expand observables in terms of 
the ratio of the scales, v 

• Construct a hierarchy of EFTs. 
Equivalent to QCD order-by-order 
in the expansion parameter

At zero temperature
m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

QQ



Integrating out the mass scale:
Non-Relativistic QCD (NRQCD)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

• The mass is integrated out and the theory 
becomes non-relativistic

• Factorization between contributions from 
the scale m and from lower-energies

• Ideal for production and decay studies

Caswell Lepage PLB167 (1986)
Bodwin Braaten Lepage PRD51 (1995)

LNRQCD =
X

n

cn(µ/m)
On

mdn�4



The scale mv:
potential NRQCD (pNRQCD)
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The scale mv:
potential NRQCD (pNRQCD)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

+ + ...
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Applications of pNRQCD

• Spectroscopy

• Extraction of SM parameters (mc, mb, �s)

• Comparisons of lattice and perturbation 
theory

• ttbar threshold production

• Reviews Brambilla et al. EPJC71 (2011) 
EPJC74 (2014)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E



Applications to quarkonia in HIC

• Production (NRQCD Vitev Sharma PRC87 2013, 
NRQCD+CGC with outlook to AA Kang Ma 
Venugopalan 2013-14)

• In-medium evolution (NRQCD, pNRQCD and 
variants)

• Both perturbation theory and lattice studies
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Bring in the medium
• The thermal medium introduces new 

scales in the physical problem

• The temperature

• The electric screening scale (Debye mass)

• The magnetic screening scale (magnetic 
mass)

• In the weak coupling assumption these 
scales develop a hierarchy

T

gT � mD

g2T � mm



Finite-temperature NR EFT how-to

• Assume a global hierarchy between the bound-state and 
thermodynamical scales

• Many different possibilities have been considered in the relevant 
macroregions                   ,                 and                   (with               ) 

• Proceed from the top to systematically integrate out each scale, 
creating a tower of EFTs. Make use of existing EFTs (T=0 NR EFTs, 
finite T EFTs such as HTL)

• Once the scale mv has been integrated out the colour singlet and 
octet potentials appear. They are always complex

?
T ⇥ mD � gT ⇥ mm � g2T

m � mv ⇠ m↵s ⇠ h1/ri � mv2 ⇠ m↵2
s ⇠ E

T � mvT ⌧ mv T ⇠ mv T ⌧ m



The complex potential
• Laine Philipsen Romatschke Tassler JHEP0703 (2007) : 

analytical continuation of Wilson loop to large real time 
yields a complex potential in HTL-resummed PT

• Re V ⇒ screening. Im V ⇒ width induced by collisions with 
the medium. Im V >> Re V

• In the EFT: compact real-time derivation, extension to other 
regimes Brambilla JG Petreczky Vairo PRD78 (2008)

VHTL = �CF↵s

✓
e�mDr

r
+mD � i

2T

mDr
f(mDr)

◆

Figure 2. Left: cut in the diagram yielding the leading piece of QQ potential corresponding to
the quasi-free process. The dashed line is the cut, thick lines with arrows are the heavy quark and
antiquark, curly lines are gluons and the particles in the loop are either light quarks or gluons.
Right: cut in the leading-order QQ colour-singlet self-energy that corresponds to the process of
quasi-free dissociation. The single line is the singlet propagator, the double line is the octet, the
vertex is a chromoelectric dipole vertex and the other lines are as in the previous diagram.

which is a good approximation as long as T � E, since the incoming parton is on shell

(hence q0in = q) and its momentum is of the order of the temperature, while the transferred

energy is of the order of the binding energy and thus q0out ⇡ q.

At this point one may wonder whether the EFTs result are consistent with this picture.

In the EFT approach one does not compute directly the cross section but rather the

imaginary part of the heavy-quark potential (for the contribution of all scales larger than

E) or of the bound state self-energy (for E and lower-lying scales). The contribution

to quasi-free dissociation will then come from diagrams such as those shown in Fig. 2.

Although in EFTs our degrees of freedom include the QQ pair as well, either as two

separate non-relativistic fields or as a QQ colour-singlet or colour-octet field, it will be

su�cient, in order to check that we have the expected structure, i.e. Eq. (2.2), to study

the imaginary part of the gluon propagator . The reason is that all the information about

the interaction with partons in the medium is encoded here.

We are going to use the real-time formalism of Thermal Field Theory [36]. In this

formalism a doubling of degrees of freedom has to be taken into account: external particles

are of type “1”, i.e. they live on the time-ordered branch of the Schwinger-Keldysh contour,

whereas in the loops one has to consider also particles of type “2”, i.e. those located on

the anti-time-ordered branch. However, as shown in detail in [9, 37], heavy quarks are not

thermalized, up to exponentially suppressed contributions and all vertices involving heavy

quarks are of type “1”. So we have to study the imaginary part of the “11” component

of the gluon propagator. By using the so-called Keldysh, or ra, representation, this can

be written in terms of the advanced (A), retarded (R) and symmetric (S) propagator. In

general the 11 component can be written as

�11(k0, k) =
1

2
(�R(k0, k) +�A(k0, k) +�S(k0, k)) , (2.3)

where throughout the paper italic letters refer to the modulus of the spatial momentum,

i.e. k = |k|.
Since (�R)⇤ = �A, the contribution to the cut of the propagator is in �S , which is in turn

– 5 –

VHTL(T � 1/r,mD)



The dissociation temperature
• Given the potential for T>>1/r>>mD

• When                     ⇒                           Dissociation temperature  
 Escobedo Soto PRA78 (2008) Laine 0810.1112 (2008)  

• Quantitatively, for the Υ(1S)                    

Escobedo Soto PRA82 (2010)
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r
� CF

2
↵s rm

2
D � i
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6
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2 T m2
D

✓
�2�E � ln(rmD)2 +

8

3

◆
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T ⇠ m↵2/3
s ImV ⇠ ReV

13

IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the properties of muonic hydrogen in a thermal bath, which may consist not
only of blackbody radiation but also of an electron-positron plasma. We have further developed the effective theory
techniques for bound state systems at finite temperature initiated in [1], in particular the application of dimensional
regularization to the factorization of the various scales in the system. They facilitate enormously the organisation
of the calculation. For instance, they make apparent when Coulomb or HTL resummations are necessary and when
they are not. In addition, both partial and final results are naturally obtained as a series of small scales over large
ones, thus providing a good control on the systematics.
We have discussed two cases. We have first addressed the academic case of muonic hydrogen with a vanishing

electron mass, which turns out to be closer to heavy quarkonium states than the actual case with a non-vanishing
electron mass, that we have addressed next. All the thermal modifications we have found turn out to be spin
independent.
In the zero electron mass case, we have studied how the effects of vacuum polarization modify the picture that we

encounter in normal hydrogen [1]. The modifications turn out to be important when the temperature is larger than
the binding energy. For instance, they would give the leading order contribution to a hypothetical Kα transition for
high enough temperatures (2). For temperatures below dissociation, we have presented the leading order, and selected
next-to-leading order, thermal corrections to the binding energy and decay width.
In the actual electron mass case, muonic hydrogen behaves very much the same as hydrogen for temperatures below

the electron mass. For temperatures larger or of the order of the electron mass the vacuum polarization effects are
sizable, and, at some point, make the bound states dissociate. We display in table I the dissociation temperature
for the lower laying states. We have also calculated the thermal modifications to a number of observables before
dissociation occurred. For instance, we plot the dependence of the Kα transition on temperature in fig. 8, which
could be tested experimentally in the future [8].
We close with a concrete application to the heavy quarkonium case. As we have mentioned before, the way a finite

electron mass affects muonic hydrogen is similar to the way a finite charm quark mass affects bottomonium [41].
Since this should also be the case at finite temperature, we can easily translate to the QCD case the results for the
dissociation temperature of muonic hydrogen, which we show in table III.

mc (MeV) Td (MeV)

∞ 480

5000 480

2500 460

1200 440

0 420

TABLE III: Dissociation temperature for Upsilon (1S) for different values of the charm mass. The nf = 3 light quark masses
are set to zero. We use as an input the values of the Bohr radius and ΛQCD found in table 2.1 of [42]. The values of these
parameters for nF = 3 are used for all values of mc except for mc = 0, where we use the ones for nF = 4
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Appendix A: Notation for the different effective field theories

At zero temperature there are three different energy scales for non-relativistic bound states. These are the hard
scale (for muonic hydrogen mµ), the soft scale mµα and the ultrasoft scale mµα2. Moreover, a finite temperature
system also has a different energy scale as T , eT , e2T ... This makes it hard to find a comprehensible notation for



Below the dissociation temperature
• When mv>>T>>mv2 the thermal medium acts as a 

perturbation to the potential. 
Relevant for the ground states of bottomonium: 

• The EFT obtained by integrating out the 
temperature from pNRQCD is called pNRQCDHTL

LpNRQCDHTL
= LHTL +Tr

(
S† [i@0 � h

s

� �V
s

] S + O† [iD0 � h
o

� �V
o

] O

)

+Tr
�
O†r · gE S + S†r · gEO

 
+

1

2
Tr

�
O†r · gEO+O†Or · gE

 
+ . . .

Brambilla Escobedo JG Soto Vairo JHEP1009 (2010)
Brambilla Escobedo JG Vairo JHEP1107 (2011)

m↵s ⇠ 1.5GeV, T < 1GeV



• Within this theory we computed the spectrum and the 
thermal width of the ϒ(1S) to order           in the power 
counting of the EFT

• We must evaluate loop diagrams in the EFTs

mv � T

where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iϵ)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T ≫ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iϵ
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 − ∆V + iϵ

[

(k0)2 D(0)
ii (k) + k⃗2 D(0)

00 (k)
]

11

18

diagram shown in Fig. 8; hence, at next-to-leading order we can write

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
πδ(−k0) k⃗2 [δD00(k)]11 , (77)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) k⃗2 [δD00(k)]21 , (78)

where

[δD00(k)]11 =
δDR

00(k) + δDA
00(k)

2
+

(

1

2
+ nB(k0)

)

(

δDR
00(k) − δDA

00(k)
)

, (79)

[δD00(k)]21 = (1 + nB(k0))
(

δDR
00(k) − δDA

00(k)
)

, (80)

δDR,A
00 (k) = −

i

k⃗4
ΠR,A

00 (k) , (81)

and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads

δVs(r) =

[

−
3

2
ζ(3) CF

αs

π
r2 T m2

D +
2

3
ζ(3) NcCF α2

s r2 T 3

]

⎛

⎝

1 0

0 −1

⎞

⎠

+i

[

CF

6
αs r2 T m2

D

(

1

ϵ
+ γE + ln π − ln

T 2

µ2
+

2

3
− 4 ln 2 − 2

ζ ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α2

s r2 T 3

]

⎛

⎝

1 0

−2 1

⎞

⎠ , (82)

where ϵ = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |⃗k|2, (Landau damping) while the one in

21

m↵5
s

T, mv2, mD T, mv2, mD
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• The width reads

�1S =

1156

27

↵3
sT +

7225

162

E1↵
3
s

�4

3

↵sa
2
0Tm

2
D

✓
ln

E2
1

T 2
+ 2�E � 3� log 4� 2

⇣ 0(2)

⇣(2)
� 8

3

I1S

◆

�32⇡

3

ln 2 a20↵
2
s T

3

E1 = �4

9
m↵2

s , a0 =
3

2m↵s



Below the dissociation temperature

• The width reads

• The leading contribution is linear in the temperature
• Two mechanisms: singlet-to-octet thermal breakup and 

Landau damping 
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where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iϵ)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T ≫ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iϵ
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 − ∆V + iϵ

[

(k0)2 D(0)
ii (k) + k⃗2 D(0)

00 (k)
]

11

18

diagram shown in Fig. 8; hence, at next-to-leading order we can write

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
πδ(−k0) k⃗2 [δD00(k)]11 , (77)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) k⃗2 [δD00(k)]21 , (78)

where

[δD00(k)]11 =
δDR

00(k) + δDA
00(k)

2
+

(

1

2
+ nB(k0)

)

(

δDR
00(k) − δDA

00(k)
)

, (79)

[δD00(k)]21 = (1 + nB(k0))
(

δDR
00(k) − δDA

00(k)
)

, (80)

δDR,A
00 (k) = −

i

k⃗4
ΠR,A

00 (k) , (81)

and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads

δVs(r) =

[

−
3

2
ζ(3) CF

αs

π
r2 T m2

D +
2

3
ζ(3) NcCF α2

s r2 T 3

]

⎛

⎝

1 0

0 −1

⎞

⎠

+i

[

CF

6
αs r2 T m2

D

(

1

ϵ
+ γE + ln π − ln

T 2

µ2
+

2

3
− 4 ln 2 − 2

ζ ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α2

s r2 T 3

]

⎛

⎝

1 0

−2 1

⎞

⎠ , (82)

where ϵ = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |⃗k|2, (Landau damping) while the one in
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• Extraction of the     spectral function from lattice NRQCD 
with MEM. Mass shifts and widths are obtained by fitting

• Consistent with our LO predictions for 
Aarts et al. JHEP1111 (2011). 

• More lattice NRQCD in Peter’s talk

NRQCD on the lattice
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Figure 5: Position of the ground state peak ∆E, normalised with the heavy
quark mass (upper panels), and the upper limit on the width of the ground state
peak, normalised with the temperature (lower panels), as a function of T/Tc

in the vector (Υ) and the pseudoscalar (ηb) channels. The error bars denote
the systematic uncertainty with the left error bars representing the error from
the finiteness of the last time in the fitting window, τ2, and the right error bar
representing the error from the finite statistics (see Sec. 6). The lines in the upper
plots indicate expected analytical behaviour assuming weak coupling above Tc.

indicate systematic uncertainties in extracting the peak position and width from
the peaked structure. In Sec. 6 these uncertainties are discussed in detail. Based
on this discussion we conclude conservatively that the width shown in Fig. 5 is
better interpreted as an upper bound, rather than the width itself.

To see whether these results are reasonable, we now take them at face value
and contrast them with analytic predictions derived assuming a weakly coupled
plasma. According to Ref. [31], the thermal contribution to the width is given,
at leading order in the weak coupling and large mass expansion, by

Γ

T
=

1156

81
α3
s ≃ 14.27α3

s, (5.2)
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quark mass (upper panels), and the upper limit on the width of the ground state
peak, normalised with the temperature (lower panels), as a function of T/Tc

in the vector (Υ) and the pseudoscalar (ηb) channels. The error bars denote
the systematic uncertainty with the left error bars representing the error from
the finiteness of the last time in the fitting window, τ2, and the right error bar
representing the error from the finite statistics (see Sec. 6). The lines in the upper
plots indicate expected analytical behaviour assuming weak coupling above Tc.

indicate systematic uncertainties in extracting the peak position and width from
the peaked structure. In Sec. 6 these uncertainties are discussed in detail. Based
on this discussion we conclude conservatively that the width shown in Fig. 5 is
better interpreted as an upper bound, rather than the width itself.

To see whether these results are reasonable, we now take them at face value
and contrast them with analytic predictions derived assuming a weakly coupled
plasma. According to Ref. [31], the thermal contribution to the width is given,
at leading order in the weak coupling and large mass expansion, by
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1156

81
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The complex potential at strong coupling
• Extraction of a complex static potential from Euclidean 

Wilson loops or correlators through novel Bayesian 
methods Rothkopf Hatsuda Sasaki PRL108 Burnier Rothkopf 2012-14 
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Static quark-antiquark potential in the quark-gluon plasma from lattice QCD

Yannis Burnier,1 Olaf Kaczmarek,2 and Alexander Rothkopf3

1Institute of Theoretical Physics, EPFL, CH-1015 Lausanne, Switzerland
2Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
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We present a state-of-the-art determination of the complex valued static quark-antiquark potential
at phenomenologically relevant temperatures around the deconfinement phase transition. Its values
are obtained from non-perturbative lattice QCD simulations using spectral functions extracted via
a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium as
well as in realistic QCD with light u, d and s quarks, lies close to the color singlet free energies
in Coulomb gauge and shows Debye screening above the (pseudo) critical temperature Tc. The
imaginary part is estimated in the gluonic medium, where we find that it is of the same order of
magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.

The potential acting between a heavy quark and anti-
quark in a thermal medium is a central ingredient in our
understanding of the strong interactions, described by
quantum chromo-dynamics (QCD). The bound states it
sustains, heavy quarkonium, are precision probes con-
necting theory and experiment [1]. They allow us to
test QCD via low temperature spectroscopy [2], as well
as through their in-medium modification [3–5] observed
in the quark gluon plasma created in relativistic heavy
ion collisions. In particular the open question of melting
and regeneration observed at RHIC and LHC [6] urges a
quantitative understanding of their in-medium behavior.

A wealth of intuition has been accumulated in the past
based, in part, on analogies with Abelian theories [3], po-
tential modeling [7] and strong coupling approaches [8].
Lattice QCD at T = 0 tells us [9] that the potential rises
linearly before flattening o↵ due to string breaking. Per-
turbation theory on the other hand shows that Debye
screening plays a major role in the deconfined phase. At
T & Tc, reached in current experiments, we expect that
the medium gradually weakens the interaction. How the
transition between the two regimes manifests itself quan-
titatively in the potential however remained unanswered.
Due to recent conceptual and methods developments we
are now able to present in this letter a first principles de-
termination of the temperature dependence of the static
inter-quark potential in the phenomenologically relevant,
i.e. non-perturbative regime around the phase transition.

The advent [10] of modern e↵ective field theory allowed
to put the definition of the static potential on a rigorous
mathematical footing. By exploiting the separation be-
tween the heavy quark rest mass and medium scales, a
derivation from a dynamical QCD observable, the real-
time thermal Wilson loop W (t, r) was achieved,

V (r) = lim
t!1

i@tW (t, r)

W (t, r)
. (1)

This expression has been evaluated at finite temperature
in hard thermal loop (HTL) resummed perturbation the-
ory [11] and was found to be complex valued. In the de-

confined phase the real part shows Debye screening, while
the imaginary part is related to the scattering (Landau
damping) and absorption (singlet-octet transition) of glu-
ons from the medium. Even though at leading order the
real part coincides with the color singlet free energies
in Coulomb gauge, this agreement is already not exact
at next-to-leading order [12]. Calculating the potential
to higher order in perturbation theory is a di�cult task
[13] and given the size of the strong coupling and the
infrared problems in gauge theories, it is evident that
non-perturbative methods within QCD, such as lattice
simulations are required. The main di�culty we face is
that numerical calculations are performed in imaginary
time without direct access to dynamical quantities, such
as W (t, r).
In Ref. [14] a strategy was laid out how to evaluate the

real-time definition Eq. (1) using Euclidean lattice QCD
simulations. It is based on a spectral decomposition

W (⌧) =

Z
d!e�!⌧⇢(!) $

Z
d!e�i!t⇢(!) = W (t),

where W (⌧) denotes the Euclidean time Wilson loop ac-
cessible on the lattice. The above can be combined with
Eq.(1) to yield

V (r) = lim
t!1

Z
d! !e�i!t⇢(!, r)/

Z
d! e�i!t⇢(!, r), (2)

in turn relating the values of the potential to the spectral
function ⇢(!, r), which can in principle be obtained from
lattice QCD.
The first practical challenge lies in obtaining the func-

tion ⇢(!, r) in Eq. (2) from a finite lattice QCD dataset
W (⌧n, r), n = 1..N⌧ with statistical errors. Extracting
from it continuous spectral features is an inherently ill-
posed problem, which however can be given meaning by
the use of Bayesian inference. In this well established sta-
tistical approach, additional prior information is used to
select a unique solution from an otherwise undetermined
�2 fit. Unfortunately the standard methods, such as the
Maximum Entropy Method (MEM) or extended MEM
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of the underlying measurements each. The error bands
(given for N⌧ = 24, 32, 56, 96) on the other hand denote
the maximum variance obtained from changing three dif-
ferent quantities. One corresponds to a reduction of the
number of datapoints along ⌧ by four and eight, the sec-
ond to changing the default model normalization (⇥10,
⇥0.1) or functional form (m / const,!�2,!2) and the
third to the reduction in signal to noise ratio by exclud-
ing 10%,20% or 30% of the available measurements. Note
that because the spectral reconstruction takes into ac-
count all datapoints along ⌧ , our results for T . Tc are
much more robust than the free energies, that rely on a
single data point. On the other hand the Bayesian recon-
struction su↵ers from a diminishing number of datapoints
at increasing temperature, as seen in the errorbands.

Our main observation is that even though the ⌧ = �
data point is excluded from the reconstruction, the val-
ues of Re[V ] obtained at all temperatures lie close to the
color singlet free energies. While the lowest temperature
shows no or very weak deviation from a linearly rising po-
tential, the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15fm we
find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re[V ]. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1 top panel),
where at intermediate ⌧ values a deviation from the ex-
ponential decay and a finite curvature emerges. To ob-
tain quantitative results, the reconstruction of the lowest
lying peak needs to capture not only the width, which en-
codes Im[V ] but also the overall skewed Lorentzian shape
related to non-potential e↵ects.

The novel Bayesian approach for the first time allows
us to extract this functional form (see Fig. 1 bottom
panel), where the MEM yielded Gaussian like features.
Previous tests based on mock data from momentum reg-
ularized HTL show that to obtain values accurate to
⇠ 25%, datasets with N⌧ ⇠ O(100) datapoints are re-
quired at a high precision of �D/D < 10�4. If less
points are available the reconstruction tends to underes-
timate the width, while statistical noise leads to broad-
ening. The former e↵ect dominates at high temperatures
and at small separation distances r < 0.25fm where the
lattice data carries small relative errors, while at larger
distances the exponential suppression of the Euclidean
correlator leads to an artificially broad width.

Taking these systematic e↵ects into account, we can
estimate the values of Im[V ] to a lie in a band which is
compatible with the expectations from HTL perturbation
theory at high temperature and appears to lie slightly
below HTL at low temperature. The results of our first-
principles investigation are consistent with the findings
by a recent modeling approach based on HTL spectral
functions [21].

Next we consider the realistic setting of a thermal QCD
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FIG. 2. Gluonic medium: (top) The shifted real part of the
static inter-quark potential (open symbols) compared to the
color singlet free energies (gray circles). Error bars represent
statistical uncertainty, error bands include also systematics
(see main text). (bottom) Im[V ] (symbols) shifted and com-
pared to the HTL predictions (solid lines).

medium containing both gluons, as well as the light u, d
and s quarks. The corresponding full QCD 483 ⇥ 12 lat-
tices were generated by the HotQCD collaboration [22]
for the study of the QCD phase structure (see Tab.I).
The Bayesian reconstructions with a common �num = 20
are performed using N! = 4600 steps in a numerical in-
terval of fixed length ! 2 [�11, 12] and a high resolution
interval of Nhr = 1000 points to capture the lowest lying
peak. Due to the high cost in generating the configura-
tions it is currently not possible to obtain similarly large
temporal extends as in quenched QCD, even with the use
of supercomputers. Therefore we focus in Fig. 3 solely on
the values of the real-part (colored symbols) of the po-
tential, which are compared to the color singlet free ener-
gies (gray circles) from the same lattices. Error bars are
again obtained from Jackknife variance. The error bands
(� = 6.8, 7.25, 7.48) result from the maximum variation
among changing the number of datapoints along ⌧ by one
and two, changing the normalization and functional form
of the default model as well as from removing 10%,20%
or 30% of the statistics.

At temperatures below and slightly above the pseudo-

3
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the maximum variance obtained from changing three dif-
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much more robust than the free energies, that rely on a
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struction su↵ers from a diminishing number of datapoints
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ues of Re[V ] obtained at all temperatures lie close to the
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shows no or very weak deviation from a linearly rising po-
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where at intermediate ⌧ values a deviation from the ex-
ponential decay and a finite curvature emerges. To ob-
tain quantitative results, the reconstruction of the lowest
lying peak needs to capture not only the width, which en-
codes Im[V ] but also the overall skewed Lorentzian shape
related to non-potential e↵ects.

The novel Bayesian approach for the first time allows
us to extract this functional form (see Fig. 1 bottom
panel), where the MEM yielded Gaussian like features.
Previous tests based on mock data from momentum reg-
ularized HTL show that to obtain values accurate to
⇠ 25%, datasets with N⌧ ⇠ O(100) datapoints are re-
quired at a high precision of �D/D < 10�4. If less
points are available the reconstruction tends to underes-
timate the width, while statistical noise leads to broad-
ening. The former e↵ect dominates at high temperatures
and at small separation distances r < 0.25fm where the
lattice data carries small relative errors, while at larger
distances the exponential suppression of the Euclidean
correlator leads to an artificially broad width.

Taking these systematic e↵ects into account, we can
estimate the values of Im[V ] to a lie in a band which is
compatible with the expectations from HTL perturbation
theory at high temperature and appears to lie slightly
below HTL at low temperature. The results of our first-
principles investigation are consistent with the findings
by a recent modeling approach based on HTL spectral
functions [21].

Next we consider the realistic setting of a thermal QCD
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FIG. 2. Gluonic medium: (top) The shifted real part of the
static inter-quark potential (open symbols) compared to the
color singlet free energies (gray circles). Error bars represent
statistical uncertainty, error bands include also systematics
(see main text). (bottom) Im[V ] (symbols) shifted and com-
pared to the HTL predictions (solid lines).

medium containing both gluons, as well as the light u, d
and s quarks. The corresponding full QCD 483 ⇥ 12 lat-
tices were generated by the HotQCD collaboration [22]
for the study of the QCD phase structure (see Tab.I).
The Bayesian reconstructions with a common �num = 20
are performed using N! = 4600 steps in a numerical in-
terval of fixed length ! 2 [�11, 12] and a high resolution
interval of Nhr = 1000 points to capture the lowest lying
peak. Due to the high cost in generating the configura-
tions it is currently not possible to obtain similarly large
temporal extends as in quenched QCD, even with the use
of supercomputers. Therefore we focus in Fig. 3 solely on
the values of the real-part (colored symbols) of the po-
tential, which are compared to the color singlet free ener-
gies (gray circles) from the same lattices. Error bars are
again obtained from Jackknife variance. The error bands
(� = 6.8, 7.25, 7.48) result from the maximum variation
among changing the number of datapoints along ⌧ by one
and two, changing the normalization and functional form
of the default model as well as from removing 10%,20%
or 30% of the statistics.

At temperatures below and slightly above the pseudo-
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• Singlet-to-octet corresponds to gluodissociation. The old 
Bhanot-Peskin cross section is a limiting case of ours. 
Bhanot Peskin NPB156 (1979) Brambilla Escobedo JG Vairo 
JHEP1112 (2011) Brezinski Wolschin PLB707 (2011)

• Landau damping corresponds to elastic parton scattering.
Clarification of validity regions in both cases 
Brambilla Escobedo JG Vairo JHEP1305 (2013)
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is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T ≫ ∆V , we may expand in ∆V/T . Moreover, at leading order,
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and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads
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where ϵ = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |⃗k|2, (Landau damping) while the one in
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Interpreting the imaginary part
• Irrespective of any perturbative mechanism, this 

thermal width is not for decay into light stuff. 
Conserves HQ number and exists in the static limit

• It encodes the decoherence effect caused by the medium 
on the bound state wavefunction

• Open quantum system interpretation: correlators may 
decay exponentially, wave function (norm) may not
Akamatsu, Rothkopf 2011-14

W (r, t) ⇡ hS(r, t)S†
(r, 0)i ! Z exp(�iV (r)t)

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)
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Conservation of number of heavy quarks

@tTr(fs) + @tTr(fo) = 0

Ensured by

Because we did not consider contact interactions in NRQCD that
represent anhilation.

Optical theorem that relates decay width and cross-section.
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• Recent results by Brambilla Escobedo Soto Vairo, 
presented by M. Escobedo at ConfXI

• Evolution equations for singlet and octet fields, with EFT 
Hamiltonians

• HQ number conservation

• Numerical solution by using the Lindblad form Akamatsu 
2014

An EFT application

Evolution of the number of singlets

fs(x , y) = Tr(⇢S†(x)S(y))

We can use perturbation theory but expanding in r instead of ↵s . In the
interaction picture

i@tS = [S ,H0]

i@t⇢ = [HI , ⇢]

Assumption 3:
We assume that HQ is comoving with the medium and that the center of
mass momentum is not changed.
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Evolution of the number of singlets

Define

H =
He↵ + H†

e↵

2

� = i(He↵ � H†
e↵ )

@t fs = �i [H, fs ]�
1

2
{�, fs}+ F(fo)

Screening.

Decay.

Creation.

Miguel A. Escobedo (Physik-Department T30f. Technische Universität München)Heavy Quarkonium suppression in a fireball 11th of September, 2014 22 / 41

Evolution of the octet

Very similar reasoning.

f abo (x , y) = Tr(⇢O†,a(x)Ob(y))

@t fo = �i [Ho , fo ]�
1

2
{�, fo}+ F1(fs) + F2(fo)

Remark:
We have this simple form because 1

fo
@t fo ⌧ E and we have this result

because of the field redefinition we made.
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Lindblad equation

@t⇢ = �i [H, ⇢] +
X

k

(Ck⇢C
†
k � 1

2
{C †

kCk , ⇢})

Used in open quantum systems and quantum optics. Numerical
libraries available to solve it (we used qutip (Johansson, Nation and
Nari (2012)).

Introduced in the world of quarkonium by Akamatsu (2014).

There is no prescription to find Ck or to tell how many are there.
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An EFT application
• First numerical results within a simple fireball, no CNM, 

no feeddown, simple initial conditions

• Screening only, RAA for Υ(1S) (number of 1S states)
Toy model for 1

r � Te↵ � mD � E
Considering C i = 0. Only screening.
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An EFT application
• First numerical results within a simple fireball, no CNM, 

no feeddown, simple initial conditions

• Width and transitions, RAA for Υ(1S) 
Toy model for 1

r � Te↵ � mD � E
Only S and P-wave
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Conclusions

• Lessons from the EFT framework

• Systematically take into account corrections and include all 
medium effects

• Give a rigorous QCD derivations of the potential, bridging 
the gap with potentials models which appear as leading-
order picture here

• Importance and interpretation of the complex potential

• Nonperturbative extensions and applications (Peter’s talk)



 

Discussion



Photons and dileptons

• Full lines: NLO calculation valid at small K2 JG Moore (2014)

• Dashed lines: combination of the above with NLO calculation 
valid at large K2 Ghisoiu Laine (2014) Laine (2013)
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Figure 14. The same as Fig. 12, but with the dominant free Born term subtracted.

Note that none of the e↵ects which give rise to �⇧<(K) involve diagrams which are included

in Laine’s calculation [7], and no NLO contribution grows as a power6 at large k�/g2T , so

no new subtraction is called for here. Figures 15 and 16 are then the NLO counterparts of

Figs. 12 and 14, with �⇧< added to both full and dashed lines. These represent our best

estimate of the spectral function relevant for dilepton production in the small virtuality

region.
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Figure 15. The same plot as Fig. 12, but with the inclusion of the small-virtuality NLO corrections
which are the focus of this paper.

6At large k� the largest NLO term is the �m2

1 contribution to Eq. (3.10) which grows logarithmically

with k�.
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Photons and dileptons

• Full lines: NLO calculation valid at small K2 JG Moore (2014)

• Dashed lines: combination of the above with NLO calculation 
valid at large K2 Ghisoiu Laine (2014) Laine (2013)

Figure 1. The current-current correlator ⇧<(K) for the case k = 6T , as a function of k0 (normal-
ized by ↵ and its dominant k0 dependence). The black curve is for free (g = 0) QCD, illustrating
the cusp at k0 = k. The red dotted curve shows the behavior in N=4 SYM theory at infinite
coupling, the most strongly coupled QCD-like theory known, which shows no cusp-like behavior.

and the small-mass-squared dilepton rate are almost interchangeable. If it behaves more

like the black curve, then the dilepton rate will show a sharp dependence on the invariant

mass of the dilepton, and photon production will be suppressed relative to expectations

based on moderate invariant-mass dileptons (if those expectations are based on Eq. (1.2)

and Eq. (1.3) and the assumption of smooth behavior in ⇧<).

The goal of this paper is to provide the most complete perturbative calculation of ⇧<

for Kµ close to lightlike which is currently possible. Previously, Ref. [6] have shown how to

compute the dilepton rate for K2 parametrically in the range K2 ⇠ g2T 2 at leading order

in the coupling. We improve this determination to the next order in the strong coupling g.

We also extend the result to larger virtuality, K2 ⇠ gT 2, and discuss the matching onto the

recently completed next-to-leading order calculation at large invariant mass squared [7, 8].

Our main motivation is to improve Fig. 1, showing how the finite-coupling, perturbative

rate behaves near the real-photon point K2 = 0.

Besides the phenomenological justification we have presented, there is an additional

theoretical reason to be interested in doing this. It is possible to determine the Euclidean-

time-domain behavior of ⇧ nonperturbatively on the lattice [9, 10]. At least in princi-

ple, this can be analytically continued to determine the real-frequency behavior which is

physically interesting, for instance, by applying an Ansatz [10] or using the Maximum En-

tropy Method [11]. Unfortunately, in practice this method is very bad at reconstructing

frequency-domain functions which possess sharp features, such as that displayed by the

black curve in Fig. 1. This is particularly so if the feature is not expected and is not

built into the model function (priors) used in the reconstruction. Therefore, determining

whether we expect such a feature would be very useful in characterizing and improving the

– 3 –



EFTs at finite temperature

• Dependence on the relative velocity of quarkonium and 
medium Escobedo Giannuzzi Mannarelli Soto PRD87 (2013)
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FIG. 5: (Color online) Spectral function of the Υ(1s), divided by −m2
Q, at T = 250 MeV (left panel) and at T = 400 MeV

(right panel), for various values of the velocity between the bound state and the plasma.

than at v = 0.9, as shown for two different temperatures in Fig. 5. This behavior is consistent with the result,
already discussed in the previous sections, that the bound states become stable at ultra-relativistic velocities. As
in the particular case considered in the previous section, this behavior can be related to the fact that the effective
temperature of the plasma is the one given in Eq. (46), and therefore for large v the plasma is almost everywhere cold.
The fact that mD(z, v) becomes purely imaginary, implies that the potential ceases to be Yukawa-like and becomes
oscillatory, as already observed numerically in Ref. [20].
Except for this peculiar behavior at v → 1, both the spectral function analysis and the computation of the width

through (32) show that the width increases as the velocity of the plasma increases, as far as v ! 0.9. This is just the
opposite of the results of Eq. (29) in Case I. The reason is that the two results refer to different energy regions, which
are dominated by different processes. In Case I the thermal width is dominated by gluo-dissociation processes. In the
present case, the dominant contribution is determined by Landau damping, which is a collisionless process. We shall
further comment on this issue in the Sec. IV.

IV. DISCUSSION AND CONCLUSIONS

In this section we first discuss how the relative velocity v used throughout is related to measurable quantities in
HIC experiments, like the momentum of the heavy quarkonium state in the lab frame, Pµ, and the local velocity of
the QGP, w, in that frame, and make a rough estimate of the importance of the relative motion in the yields. Next we
compare our result with lattice computations, earlier weak-coupling analysis, and AdS/CFT calculations. We close
it with the conclusions.
The clearest experimental signal of the velocity dependence in the in-medium heavy quarkonium properties should

be in the dilepton yields at fixed rapidity and transverse momentum. In order to have an estimate of the effect, we
assume that in a central collision the produced medium expands at a constant velocity, w, with respect to the lab
frame. Typical values for w quoted in the literature are w∥ ∼ 1 and w⊥ ∼ 0.6 for RHIC and w⊥ ∼ 0.66 for LHC.
We further assume that the system has had enough time to thermalize and that it is isotropic. A heavy quarkonium
produced with a certain Pµ in that frame, moves with respect to the plasma with a velocity

v =
−P 0w + P ·w

w2 w +
(

P − P ·w
w2 w

)√
1−w2

P 0 −w ·P
, (51)

which is the velocity appearing in the formulas of the previous sections. Notice that for a given longitudinal momentum
this velocity is not totally fixed, it still depends on the transverse momentum and on the modulus of the parallel and
perpendicular velocities of the plasma in the lab frame, and on the angle ϕ between w⊥ and P⊥ in the transverse
plain. The modulus of the velocity can be written as

v = |v| =

√

1−
(1−w2)M2

M2 − 2P 0w ·P + (w · P )2 + P 2
, (52)

⌥(1S) T = 250MeV ⌥(1S) T = 400MeV



• Landau damping and quasi-free dissociation are the same 
process.

• The EFT analysis finds that the factorization formula is not 
correct:

• Fails to account for stimulated emission

• The cross section has to be T-dependent

Brambilla Escobedo JG Vairo JHEP1305 (2013)
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Potentials and free energies
• Thermodynamical free energies obtained from Polyakov loops  

are widely used and measured on the lattice

• We have studied the correlator of Polyakov loops and the 
associated colour-average free energy hTrL†(0)TrL(r)i = e�

F
QQ

(r,T )

T



Potentials and free energies
• Thermodynamical free energies obtained from Polyakov loops  

are widely used and measured on the lattice

• We have studied the correlator of Polyakov loops and the 
associated colour-average free energy

• We have shown that, with pNRQCD in imaginary time, it can 
be decomposed  at short distances into gauge-invariant colour-
singlet and octet free energies

hTrL†(0)TrL(r)i = e�
F
QQ

(r,T )

T



Potentials and free energies
• Thermodynamical free energies obtained from Polyakov loops  

are widely used and measured on the lattice

• We have studied the correlator of Polyakov loops and the 
associated colour-average free energy

• We have shown that, with pNRQCD in imaginary time, it can 
be decomposed  at short distances into gauge-invariant colour-
singlet and octet free energies

• These free energies are quantitatively different from the real-
time potentials

Brambilla JG Petreczky Vairo PRD82 (2010)

Im(F ) = 0, Im(V ) 6= 0 Re(F ) 6= Re(V )
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• These free energies are quantitatively different from the 
potentials

• Intuitively

• Extra divergences can arise for observables spanning the entire 
imaginary axis
Berwein Brambilla JG Vairo JHEP1303 (2013)

Potentials and free energies

Im(F ) = 0, Im(V ) 6= 0 Re(F ) 6= Re(V )
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T


