Thermal Radiation: An Experimental Review

Axel Drees, December ^{15th}, QCD meets HI, Heidelberg 2014

Introduction

Thermal Photon Measurements

- High low p_T direct photon yield
- Centrality dependence ~ $N_{part}^{3/2}$
- Large direct photon angular anisotropy

Comparison to Theoretical Models

• Thermal Photon Puzzle

Outlook and Summary

Thermal Radiation from Hot & Dense Matter

Black Body Radiation

- Real or virtual photons
- Spectrum and yield sensitive to temperature Avg. inv. slope ∝ T, Yield ∝ T³
- Space-time evolution of matter collective motion → Doppler shift
 - → anisotropy

High yield \rightarrow high T \rightarrow early emission Large anisotropy \rightarrow Doppler shift \rightarrow late emission

Microscopic view of thermal radiation

QGP:hadron gas: $g^{\text{minimed}} q$ $\pi \longrightarrow \pi$ q γ ρ γ photonslow mass lepton pairs

Need realistic model simulation for rates and space-time evolution for quantitative comparison with data

Experimental Issue: Isolate Thermal Radiation

Stony Brook University

Using γ^* to Measure Direct Photons

- Searches for thermal photons ongoing since late 1980's at SPS
 - WA80 & successors, HELIOS, CERES ...
 - Established mostly upper limits in relevant range p_T < few GeV
- Breakthrough at RHIC: Measuring direct photons via virtual photons – published 2010
 PHENIX Phys.Rev.Lett 104 (2010) 132301
 - Method originally proposed by UA1 for prompt photons
- Using virtual photons:
 - any process that radiates γ will also radiate γ^*
 - for $m \ll p_T \gamma^*$ are "almost real"
 - extrapolate $\gamma^* \rightarrow e^+e^-$ yield to $m = 0 \rightarrow$ direct γ yield
 - $m > m_{\pi}$ cut removes 90% of hadron decay background
 - S/B improves by factor 10 so that 10% direct $\gamma \rightarrow 100\%$ direct γ^*
 - measure ratio $\gamma^*_{direct}/\gamma^*_{inclusive}$ for sys. uncertainty cancelation

PHENIX: Direct Photons from Virtual Photons

PHENIX: Direct Photons from Photon Conversions

Double ratio tagging method

- **Clean photon sample with** photon conversion
- **Explicit cancelation of** systematic uncertainties
- **Combined result from 2** analyses

Direct photons

- Well established in AuAu at **RHIC**
- **Real and virtual photons** consistent
- **Full centrality dependence**

Almost 20% direct photons in central Au+Au! Approx. independent of p_{T} from 0.4 to 4 GeV

PHENIX: Direct Photons Au+Au Collisions

RHIC: Direct Photons Au+Au Collisions

ALICE: Direct Photons Pb+Pb Collisions

Direct photon yield observed by ALICE at LHC

- PbPb follows N_{coll} scaled NLO calculations above 4 GeV
- $20 \pm 10\%$ excess below 3 GeV with in AuAu
- Excess has nearly exp. shape with inv. slope $T_{eff} \sim 300 \text{ MeV}$

PHENIX: Direct Photons Au+Au Collisions

Centrality Dependence of Thermal Component

- Inverse slope ~ const.
- Fit range 0.6-2.0 GeV: $Ae^{-p_T/T_{eff}}$

Centrality	N_{part}	$N_{ m coll}$	$T_{\rm eff}~({\rm MeV}/c)$
0%– $20%$	279.9 ± 5.7	779.0 ± 75.2	$239 \pm 25 \pm 7$
20%– $40%$	140.4 ± 7.0	296.8 ± 31.1	$260\pm33\pm8$
40%– $60%$	59.9 ± 5.0	90.6 ± 11.8	$225\pm28\pm6$
60%– $92%$	17.6 ± 4.2	14.5 ± 4.0	$238\pm50\pm6$

- Rapidly increasing yield with centrality like N_{part}^α
 - Data $\alpha = 1.48 \pm 0.08 \pm 0.04$
 - Faster than volume ~ N_{part}
 - Faster than prompt component
 - $N_{coll} \sim N_{part}^{4/3}$
 - Slower than naïve expectation Yield ~ N_{part}²

Stony Brook University

Collective Behavior: Elliptic Flow

Thermal radiation emitted from moving matter → Doppler Shift → Anisotropy

Thermal Photon Show Large Anisotropy

PHENIX Phys.Rev.Lett 109 (2012) 122302

Thermal Photon Anisotropy Update

- Two new independent analysis
 - Calorimeter measurement
 - photon conversions $\gamma \rightarrow e^+e^-$

(also seen at LHC – see below)

Consistent with published results Large v₂~ 0.2 at 2 GeV/c Indication for const. v₂ at low p_T

Theory Comparison: Thermal Photon Puzzle (I)

data: PHENIX arXiv:1405.3940

Linnyk et al. Au+Au 10 Transport model: Linnyk, Cassing, vHees et al. $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$ Shen et al. (KLN) Bratkovskaya, PRC89 (2014) 0034908 10^{0} $\frac{\mathrm{d}^2 N}{\mathrm{d} p_T \mathrm{d} y} \left[(\mathrm{GeV}/c)^{-2} \right]$ Shen et al. (MCGlb) direct γ Fireball model: van Hees, Gale, Rapp, 10^{-} PRC84 (2011) 054906 10^{-2} Hydrodynamic model: Shen, Heinz, Paguet, 10^{-3} Gale, PRC89 (2014) 044910 $2\pi p_T$ 10^{-4} 10^{-5} 0-20% 20-40% (d) (c) 10^{1} **Reasonable agreement with:** 10^{0} $T_{ini} = 300 \text{ to } 600 \text{ MeV}$ 10^{-} Shape similar, but yield is 10^{-2} underestimated by factor 2-10 10^{-3} 10^{-4} 10^{-5} 60-92% 40-60% 2 2 3 3 Stony Brook University $p_T [\text{GeV}/c]$

Theory Comparison: Thermal Photon Puzzle (II)

Difficult for models to describe simultaneously photon yield, T and v2 at RHIC!

Theory Comparison: Thermal Photon Puzzle (III)

Difficult for models to describe simultaneously photon yield, T and v2 at LHC!

Thermal Photon Puzzle and Beyond

Interpretation as thermal photons seems incomplete

- Experimental low momentum photon data shows:
 - High yield \rightarrow early emission
 - Large anisotropy \rightarrow late emission
- Theoretical models of thermal radiation based on:
 - Standard rates
 - Hydro like space-time evolution

fail to describe the data

Thermal Photon Puzzle and Beyond

What are we missing?

- Are the rates right?
- Impact of large B-fields?
- Pre-equilibrium dynamics?

• High yield \rightarrow early emission

- Large anisotropy \rightarrow late emission
- Theoretical models of thermal radiation based on:
 - Standard rates
 - Hydro like space-time evolution

fail to describe the data

Large B-field Enhances Thermal Radiation

Basar, Kharzeev, Skokov PRL 109 (2012) 202303

B.Müller, S.Y.Wu, D.LYang PRD 89 (2014) 026013

Axel Drees

Summary and Outlook

- Well established measurement of low momentum direct photon in Au+Au at 200 GeV at RHIC
 - Large yield above expected contribution from pQCD
 - Centrality dependence of yield ~ $N_{part}^{3/2}$
 - Large anisotropy v₂ with respect to reaction plan
- Consistent data from LHC in Pb+Pb at 2.76 TeV
- Thermal photon puzzle
 - Models based on standard rates and time evolution fail to describe simultaneously photon yield, T and v2
 - New additional sources early in collision? Enhanced emission due to large B fields Pre-equilibrium dynamics
- Expect additional experimental measurements from RHIC
 - Vary collision geometry → U+U, Cu+Au, p+A
 - 62.4 (and 39 GeV) Au+Au
 - New large Au+Au data samples to measure v_n

Backup slides

First Measurement of Thermal Radiation

Direct photons from real photons:

- Measure inclusive photons
- Subtract π^0 and η decay photons at S/B < 1:10 for p_T <3 GeV

Direct photons from virtual photons:

- Measure e^+e^- pairs at $m_{\pi} < m << p_T$
- Subtract η decays at S/B ~ 1:1
- Extrapolate to mass 0

First thermal photon measurement: $T_{ini} > 220 \text{ MeV} > T_C$

large photon yield!

Theoretical Models Underestimate Yield

• About factor of 2 at high pt – with large errors

• Factor 5-10 at lower pt (central collisions)

Stony Brook University

Fit e⁺e⁻ Mass Distribution to Extract the Direct Yield:

Example: one p_T bin for Au+Au collisions

$$\frac{d\sigma_{ee}}{dM^2 dp_T^2 dy} \cong \frac{\alpha}{3\pi} \frac{1}{M^2} L(M) \frac{d\sigma_{\gamma}}{dp_T^2 dy}$$

Direct γ^* yield fitted in range 120 to 300 MeV Insensitive to π^0 yield

PHENIX: Direct Photons from Photon Conversions

Double ratio tagging method

- **Clean photon sample with photon conversion**
- **Explicit cancelation of systematic uncertainties** ۵

Stony Brook University

Axel Drees

Flow vs B Field Effect

• Look at different collision systems

U+U and Cu+Au data sitting on tape waiting to be analysis

