Flow and initial state fluctuations Constantin Loizides

16 December 2014

"Ab initio approaches in many-body QCD confront HI experiments" workshop, Heidelberg

Initial and final state anisotropy

∠ Ollitrault, 1992

Initial spatial anisotropy: Eccentricity

$$\boldsymbol{\epsilon}_{\text{std}} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Interactions present early (self quenched) Momentum space anisotropy: Elliptic flow

$$v_2 = \langle \cos(2\varphi - 2\Psi_R) \rangle$$

Initial and final state anisotropy

Initial spatial anisotropy: Eccentricity

$$\boldsymbol{\epsilon}_{\text{std}} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Interactions present early (self quenched) Momentum space anisotropy: Elliptic flow

$$v_2 = \langle \cos(2\varphi - 2\Psi_R) \rangle$$

Geometry fluctuations

Hama et al., nucl-th/0102011

Hydrodynamic calculation with fluctuating initial conditions

Geometry fluctuations understood as a perturbation of reaction plane eccentricity

relative to reaction plane

Importance of initial state fluctuations

PHOBOS, PRL 98 (2007) 242302

Expected relative flow fluctuations

Measured relative total fluctuations

Shown at QM06 as flow fluctuations, however non-flow contribution (included in sys.error from HIJING) not subtracted. Now interpreted as total v_2 fluctuations.

Measure non-flow contribution

Data driven analysis to measure the contribution of non-flow

- Flow is a function of η and correlates particles at all Δ η
- Non-flow (δ) is dominated by short range correlations (small Δη)
- Study correlations at different $\Delta \eta$ $v_2^2(\eta_1, \eta_2) \equiv \langle \cos(2\Delta \phi) \rangle(\eta_1, \eta_2)$ $= v_2(\eta_1) * v_2(\eta_2) + \delta(\eta_1, \eta_2)$

- Assume non-flow to be zero for $\Delta \eta > 2$

- Fit
$$v_2^2(\eta_1, \eta_2) = v_2^{fit}(\eta_1) * v_2^{fit}(\eta_2)$$
, $|\eta_2 - \eta_1| > 2$

- Subtract fit results at all (η_1, η_2)
- Integrate over particle pairs to obtain δ/v_2^2
- Numerically relate δ/v_2^2 and $\sigma_{v_2}/\langle v_2 \rangle$ to obtain $\sigma_{flow}/\langle v_2 \rangle$

PHOBOS, PRC 81 034915 (2010)

Relative flow fluctuations

Flow fluctuations observed similar to what those predicted by simple models of initial state fluctuations.

Short-range ($\Delta\eta$ <2) non-flow contribution are removed

Correction for non-flow and fluctuations

Derive analytic correction for non-flow and fluctuations in leading order of δ and $\sigma_{\nu_2}^2$

$$v_{2}\{2\}^{2} = \langle v_{2} \rangle^{2} + \sigma_{v_{2}}^{2} + \delta$$

$$v\{4\}^{2} = \langle v \rangle^{2} - \sigma_{v_{2}}^{2}$$

$$v\{\text{subEP}\}^{2} = \langle v \rangle^{2} + (1 - f(R))\sigma_{v_{2}}^{2} + (1 - 2f(R))\delta_{v_{2}}^{2} + (1 - 2f($$

Differences between methods proportional to

$$\sigma_{tot} = \delta + 2 \sigma_{v_2}^2$$

Need additional assumption or information to separate between non-flow and fluctuations

Ollitrault, Poskanzer, Voloshin PRC 80 (2009) 014904

10

Correction for non-flow and fluctuations

Corrected mean values agree in participant frame. Reduces errors on v_2 measurements by about 20%.

Eccentricity values are calculated for standard Glauber and a mix of 30:70 CGC (not shown)

Ollitrault, Poskanzer, Voloshin PRC 80 (2009) 014904

11

How viscous is the liquid?

State-of-art results from second-order conformal hydrodynamics (2+1D) yield a low shear viscosity to entropy ratio.

General consensus (from QM09) that:
$$\frac{\eta}{s} < 6 \times \frac{1}{4\pi}$$

Reduced errors on v_2 data allows to study 20% effects.

Luzum, Romatschke, PRC 78 034915 (2008); PRC 79 039903 (2009)

Correlations at large $\Delta \eta$

Long range correlations are well described by 3 Fourier components

Alver, Roland, PRC 81 (2010) 054905

Closer look at "non-flow"

Remove first and second Fourier contribution and suppress short-range peak ($|\Delta\eta| < 1$)

Is Third Fourier special?

- It is a large effect
- It is there at large $\Delta \eta$
- Can it be linked to initial state?
- Is it a function of η (?)
- Measure centrality + p_T dependence, 3 particle correlations, non-flow, etc.

Ridge and broad away side: Even without trigger particle and at large $\Delta \eta$

Participant triangularity and triangular flow 15

Initial shape fluctuations:
TriangularityInteractions
present earlyMomentum space anisotropy:
Triangular flow $\varepsilon_3 = \sqrt{\langle (r^2 \cos(3\phi) \rangle^2 + \langle (r^2 \sin(3\phi) \rangle^2) / r^2 \rangle}$ $V_3 = \langle \cos(3\phi - 3\psi_3) \rangle$

Alver, Roland, PRC 81 (2010) 054905

Triangular flow in AMPT

16

Participant triangularity leads to triangular flow in AMPT

Alver, Roland, PRC 81 (2010) 054905

Two-particle angular correlations

Higher harmonic flow

Significant triangular flow observed. Centrality dependence is different to that of elliptic flow. Measurements vs reaction plane yield zero as expected if it arises from fluctuations.

Fluctuations, viscosity and e-by-e hydro 19

The overall dependence of v_2 and v_3 is described. However, not yet for a single η /s value. More constraints on initial conditions provided by v_3 and higher harmonics.

Mass-dependent splitting of v_2 and v_3

- Particle mass dependent splitting from radial flow characteristic for v₂
- Can be described by hydrodynamical models (+ hadronic afterburners)

- Similar mass splitting for v₃
- Qualitatively described by hydrodynamical models (+ hadronic afterburners)
- Provides additional constraints on η/s

20

Event-by-event fluctuations

Hydro describes more than only average $v_{_N}$

ATLAS, JHEP 11 (2013) 183 Schenke et al., PRL 110 (2013) 012302

Event plane angle correlations

Fluctuations and hydrodynamic evolution lead to specific correlations of different order event plane angles

ATLAS, PRC 90 (2014) 024905

Factorization breakdown

(2014) 099

Event shape engineering

ە^{0.0} Centrality 0-70%, no q₂ selection Centrality intervals ATLAS Preliminary with q₂ selection: -Vs_{NN}=2.76 TeV 0.05 - 0-5% - 30-35% $L_{int} = 7 \mu b^{-1}$ 10-15% 40-45% 20-25% - 50-55% Pb+Pb 60-65% 0.04 0.03 0.5 < p_⊥ < 2 GeV, l∆ηl>2 0.02 0.05 0.1 0.15 ٧,

May indicate that viscous effects mostly controlled by system size rather by shape Anti-correlation at fixed centrality: Constrain for models, in particular at 0-5% class

ATLAS-CONF-2014-022

Two-particle angular correlations at LHC 25

Multi-particle correlations in PbPb and pPb 26

Multi-particle correlation results are the same within 10%. Strong evidence of collective nature of correlations.

CMS-HIN-14-006

Integrated v_3 in PbPb and pPb

• Same v_3 in pPb as in PbPb

- Turn on at around M=50 tracks (~minbias pPb)
- Established picture in PbPb
 - Transformation of IS fluctuations into FS via interactions

- Same physics mechanism despite different underlying dynamics (+ system size)?
- Maybe we select on events in which the proton wave function fluctuated to large values (fat proton, Mueller, arXiv:1307.5911v2)

CMS, PLB 724 (2013) 213

v_2 and v_3 in dAu at RHIC

Large v_2 (about twice as much as that of pPb) and negligible v_3 found in dAu, as expect from initial state eccentricities.

Geometric engineering

Nagle et al., PRL 113 (2014) 112301

29

• ³He+Au (0-5%) N_{part}=25.0 ϵ_2 =0.504 ϵ_3 =0.283

• d+Au (0-5%) N_{part}=17.8
$$\epsilon_2$$
=0.540 ϵ_3 =0.190

Measurement:

• The V_2 of ³He+Au

is similar to that of d+Au

 A clear V₃ signal observed in 0-5% ³He+Au collisions

Summary / Outlook

- Understanding of connection between initial and final state in AA collisions significantly advanced in past 10 years
- Hydrodynamical models passed a variety of tests
 - Still often qualitatively and not fully systematically applied
 - Many aspects also described by AMPT
- Onset of collectivity in small systems not surprising if the created system is "comparable in size" to that of a peripheral AA
 - Small systems allow one to study flow from fluctuations only
 - In pA collisions the (sub-)structure of p is probed
 - Long pAu run in 2015 at RHIC for further experimental insight
 - Models should attempt to describe p/dA and AA and systematically explore the similarity and difference between them (if any)
 - Is there (partial) thermalization?
 - Is there jet modification or suppression?
 - Is the physics origin in high mult pp the same?
 - Is there a change from IS (GLASMA) dominance to FS (HYDRO) evolution?

Extra

Elliptic flow and ideal hydro

Ideal relativistic hydrodynamics $T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu}$ $\delta_{\mu}T^{\mu\nu}=0$ $\delta_{\mu} N_i^{\mu} = 0, i = B, S, \dots$ p = p(e, n) Closure with EoS

Assumption:

After a short thermalization time (≤1fm/c) a system in local equilibrium with zero mean free path and zero viscosity is created

Initial conditions (IC) Freeze-out cond. (FO)

 V_2

Elliptic flow: Self quenching

- The picture is supported by a hydrodynamical calculation using two different equations of state
- The momentum anisotropy is dominantly built up in the QGP (t<2-3fm/c) phase and stays constant in the (first-order) phase transition, and only slightly rises in the hadronic phase

33

Measuring elliptic flow fluctuations

Variation of the fit region

Non-flow ratio as a function of $\Delta \eta$ cut used to define the fit region.

Red-point is baseline for analysis, while black points are used for systematic error Saturation is very encouraging, however does not rule out contributions with very little $\Delta\eta$ dependence.

Variation of non-flow strength in fit region 36

Assume non-flow in fit region to be m times non-flow in p+p (rather than 0) $v_2^2(\eta_1,\eta_2) - m \delta_{MC}^{HIJING} = v_2^{fit}(\eta_1) * v_2^{fit}(\eta_2) |\eta_2 - \eta_1| > 2$

Flow vs non-flow

Standard picture:

- Flow = global ("collective")
 - Second Fourier coefficient
- Non-flow = local ("clusters")
 - All Fourier coefficients

Why is Second Fourier special?

- It is a large effect
- It is present at large $\Delta \eta$
- It is a function of $\boldsymbol{\eta}$
- v₂/ε, v₂(p_T), v₂(RP), v₂{4}, fluctuations, etc., make "sense"

Measuring the v_2 coefficient

$$v_2 = \langle \cos(2\varphi - 2\Psi_R) \rangle$$

Need to deal with the reaction plane angle: Use differences between particles in azimuth (or attempt to reconstruct it directly)

$$v_{2}\{2\} = \sqrt{\langle cos(2\phi_{1} - 2\phi_{2}) \rangle}$$

Can suppress "non-flow" by employing cuts in $|\Delta \eta|$ If p_T cuts are used: $v\{2\} = \sqrt{v(p_{T,1})v(p_{T,2})}$

Multi-particle correlations: v_2 {4} and higher 39

Four particle correlations (Q-cumulant method):

$$\begin{array}{c|c} \varphi_{1} & \varphi_{3} \\ \varphi_{2} & \varphi_{4} \end{array} = \begin{array}{c|c} \varphi_{2} & \varphi_{4} \end{array} + \begin{array}{c|c} \varphi_{4} & \varphi_{4} \end{array} + \begin{array}{$$

Multi-particle correlations (cumulant) studies extract the genuine multi-particle correlation

Flow methods

Two-particle cumulant

$$v\{2\} = \sqrt{\langle cos(\varphi_1 - \varphi_2) \rangle}$$

Measures:

$$v{2}^2 = \langle v \rangle^2 + \sigma_{v_2}^2 + \delta$$

 $v \gg 1/\sqrt{M}$

Four-particle cumulant Me

$$v{4}=(2\langle \cos(\phi_1-\phi_2)\rangle^2-\langle \cos(\phi_1+\phi_2-\phi_3-\phi_4)\rangle)^{1/4}$$
 V{

Measures: $v{4}^2 = \langle v \rangle^2 - \sigma_{v_2}^2$ $v \gg 1/M^{3/4}$

$$v\{subEP\} = \frac{\langle cos(\phi - \psi_A) \rangle}{R}$$
$$R = \sqrt{\langle cos(\psi_A - \psi_B) \rangle}$$

Measures: $v\{subEP\}^2 = \langle v \rangle^2 + (1-f(R))\sigma_{v_2}^2$ $+ (1-2f(R))\delta$

> Ollitrault, Poskanzer, Voloshin PRC 80 80 014904 (2009)

NB: For simplicity, n (as index and in cos terms) dropped

Initial state fluctuations and flow ridges

41

Structures seen in two particle correlations are naturally explained by measured flow harmonics assuming fluctuating initial conditions.

"Death of the Mach cone and the ridge"

Dozen's of models

Intriguing ridge structure at RHIC STAR Au+Au 0-10% HOBOS Au+Au 0-30% $hog = \frac{1}{2}$ hog

42

Structures seen in two particle correlations (reported mainly at RHIC) are naturally explained by measured anisotropic flow coefficients.

From Jamie Nagle's talk at QM'09

Higher harmonics and viscosity

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$\frac{dN}{d \varphi} \sim 1 + 2v_{2} \cos[2(\varphi - \psi_{2})] + 2v_{3} \cos[3(\varphi - \psi_{3})] + 2v_{4} \cos[4(\varphi - \psi_{4})] + 2v_{5} \cos[5(\varphi - \psi_{5})] + \dots$$

Ideal hydrodynamical models preserves these "clumpy" initial conditions

Higher harmonics and viscosity

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$\frac{dN}{d\phi} \sim 1 + 2v_{2}\cos[2(\phi - \psi_{2})] + 2v_{3}\cos[3(\phi - \psi_{3})] + 2v_{4}\cos[4(\phi - \psi_{4})] + 2v_{5}\cos[5(\phi - \psi_{5})] + \dots$$

Constraints on η /s from model calculations 45

 $\eta/s \approx 0.12$ at $\sqrt{s} = 0.2$ TeV $\eta/s \approx 0.2$ at $\sqrt{s} = 2.76$ TeV

Model (IP-Glasma) consistently describes all flow harmonics for a given η/s (but uncertainty on η/s still very large)

Schenke et al., PRL 110 (2013) 012302

Flow coefficients vs rapidity gap

PRC 86 (2012) 014907

Event angle correlations

PRC 90 (2014) 024905

Event-by-event flow distributions

JHEP 11 (2013) 183

Event-by-event flow distributions

JHEP 11 (2013) 183

Extraction of double ridge structure

50

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - Assumed that 60-100% class is free from non-jet like correlations

Geometry engineering

51

Freeze-out radii (R_{inv}) vs N_{ch}

- Exhibit different trend (with linear fit over measured region)
- Radii in pp and pPb at similar measured Nch are with 5-15% while larger difference (up to 30-50%) between pPb and PbPb
- Not much room for a hydro-dynamical expansion in pPb beyond what might already be there in pp

52

PLB 739 (2014) 139

Geometry engineering: He³-Au data

Geometry engineering: He³-Au data

Higher harmonics in pPb

 v_n in PbPb and pPb at high p_T

Breaking of factorization

Only a small effect, pPb is very smooth

Breaking of factorization

Effect in pPb is comparable to that in peripheral PbPb

AMPT comparison with pPb and PbPb

G.-L. Ma and A. Bzdak, arXiv:1406.2804, in press for PRL

AMPT does a good job describing data except for mass dependence of v_3

Elastic scatterings per parton in AMPT

Average p_T versus N_{ch}

- рр
 - Within PYTHIA model increase in mean p_T can be modeled with Color Reconnections between strings
 - Can be interpreted as collective effect (e.g. Velasquez et al., arXiv:1303.6326v1)

pPb

- Increase follows pp up to N_{ch}~14 (90% of pp cross section, pp already biased)
- Glauber MC (as other models based on incoherent superposition) fails
- Like in pp: Do we need a (microscopic) concept of interacting strings?
- EPOS LHC which includes a hydro evolution describes the data (also pp)
- PbPb
 - As expected, incoherent superposition can not describe data

Longitudinal direction

- ----