Recent ATLAS Measurements of jets and electroweak bosons

Prof. Brian. A Cole Columbia University

EMMI, December 16, 2014

Tuesday, December 16, 14

The beginning ...

Probes differential quenching. Need other measurements to probe inclusive quenching.

Tuesday, December 16, 14

Jet probes of the quark gluon plasma

 Use jets from hard scattering processes to directly probe the quark gluon plasma (QGP)

Key experimental question: How do parton showers in quark gluon plasma differ from those in vacuum? ⇒Remember: not all jets the same (q/g/c/b) Use vector bosons to calibrate rates

Jet probes of the quark gluon plasma (2)

Jet - QGP interactions schematically

<u>Leading parton:</u> Transfers energy to medium by elastic collisions Radiates gluons due to scatterings in the medium (<u>inside</u> and <u>outside</u> jet cone)

Radiated gluons (vacuum & medium-induced): Transfer energy to medium by elastic collisions Be kicked out of the jet cone by multiple scatterings after emission

This is an intrinsically weakly coupled picture
But flow measurements imply strong coupling at least for long (how long?) wavelengths

How confident are we that quenching is dominated by weakly coupled modes ("it works" is inadequate).

Pb+Pb photon yields

Ratios of isolated, direct photon yields/T_{AA} to NLO pQCD calculation for p-p (JETPHOX1.3)
 Also shown, JETPHOX for Pb+Pb: iso only, EPS09
 Hard scattering rates under control, but not yet sensitive to nuclear PDF effects in Pb+Pb

Jet spectra: p+p and Pb+Pb

Absolutely normalized jet spectra:

2013 2.76 TeV p+p (left)
⇒ cross-section
2011 Pb+Pb (right)
⇒per-event yields

Jet RAA: ATLAS preliminary for QM14

R_{AA} vs p_T and y

 in sub-set of
 measured
 centrality bins
 Fully unfolded

Observe

- Factor of ~ 2
 suppression up to
 jet p_T of 400 GeV
- Slow increase with increasing jet p_T
 ⇒May vary with centrality

pt dependence of RAA

Calculation by He et al gets correct slope for

right amount of quenching

Attempt to extract slope from data accounting

for systematic uncertainties yields nonzero slope at 3σ significance

Jet RAA vs centrality and y: ATLAS

No significant dependence on rapidity observed

- Even though both spectrum shape and quark/gluon fractions vary with y
 - Especially important to test expectations that gluon dE/dx ~ twice that of quarks

Need differential, more precise measurements of even single jet suppression to make progress

Centrality dependence

 Variation of jet R_{AA} with centrality continues down to the most central 1% bin
 Geometry? energy density/T?
 ⇒ Need detailed quenching calculations.

Differential jet suppression

• Use elliptic flow in underlying event to determine orientation of event plane for each event.

• Measure variation in jet yield as a function of relative angle, $\Delta \phi = \phi - \Psi_2$.

Differential jet suppression (2)

- Centrality dependence of
 - Jet v₂
 - Ratio of in-plane to out-of-plane jet yields
- Observe up to 20% change in jet yield with Δφ
 - ⇒Critical test of path length dependence of energy loss

 Next step: test for sensitivity of jet quenching to energy density fluctuations seen in vn

Pb+Pb fragmentation functions: ATLAS

 Distributions of charged-particle fragments in isolated R = 0.4, 0.3, 0.2 jets

 Isolation avoids complications from nearby jets
 Evaluate ratios to observe quenching effects

Pb+Pb modified jet fragmentation

 Observe modifications of parton showers / fragmentation functions

⇒Loss of fragments at intermediate z, excess at low z/p_T, possibly at high z as well.

Frag functions: interpretation?

How much if this is really medium modification of parton showers?
Versus (e.g.) different quark/gluon dE/dx?
Hints that q/g is ~ enough.
What is responsible for low-z excess?

 \Rightarrow Hints from JEWEL that it's medium recoils.

Pb+Pb nearby jets, RAR

 1st step in studying internal structure of parton showers

Measure conditional yield of "neighboring" (lower p_T) jets associated with "test" jet

 \Rightarrow In this analysis, over 0.8 < Δ R < 1.6 for R = 0.4

Pb+Pb nearby jets, RAR

1st step in studying internal structure of parton showers

- Measure conditional yield of "neighboring" (lower p_T) jets associated with "test" jet
 - \Rightarrow In this analysis, over 0.8 < Δ R < 1.6 for R = 0.4
- Predominantly from parton shower (vs NLO)
 - ⇒ Mostly gluon jets but generator dependence …
 - \Rightarrow In p-p R_{Δ R} used for α_s measurement

R_{AR} vs neighboring jet p_T

 Large reduction in R_{AR} between peripheral and central collisions

- Though spectrum of nearby jets is less steep than the inclusive jet spectrum
- And the quenching of test jet should partially compensate the quenching of nearby jet.

R_{AR} central/peripheral ratios

 Take central / peripheral ratio of the R_{AR} values, plot vs neighboring jet p_T

- surprising centrality dependence?
 - \Rightarrow little difference between 20-40% and 40-80%
- Most of the "suppression" disappears for comparable test and neighboring jet $p_{\rm T}$ values
- Need real calculation to interpret

• Influence of pre-equilibrium physics? too high k_T ?

Summary / comments

- Jet suppression and fragmentation functions probe average quenching effects
 - -quark/gluon differences/contributions?
 - when will be ready to start applying serious calculations to the data
 - ⇒with intent to test theory (first) and evaluate medium properties (second)
- Modulation of jet yield wrt elliptic plane
 - Important step in using jets to probe geometry \Rightarrow important to extend to higher v_n (Run 2)
- New results on multiple jets in parton showers
 - -Another kind of multiple-parton correlation
 - ⇒Test understanding of in-medium PS
- (where) Is there sensitivity to pre-equilibrium?

p+Pb Jet production: ATLAS

~ inclusive jet yields (left) and jet R_{pPb} (right)
 ⇒using 2013 p-p reference for R_{pPb}
 • R_{pPb} compared to pQCD w/ EPS09 (Armesto)

Tuesday, December 16, 14

p+Pb Glauber(Gribov) analysis

 Evaluating implications of the Strikman et al Glauber-Gribov color fluctuations model for p+Pb centrality

Jet R_{CP}, R_{pPb}

As reported at Hard Probes

- ATLAS observes a strong variation in jet yield with centrality at high p_T or forward rapidities

⇒Scales with p = p_T × cosh(y) in forward direction

 \Rightarrow Depends on x_p ?

Coupling hard and soft physics

Undermines existing paradigm for centrality
 ⇒Need much more detailed description of geometry of p-p, p-A (A-A?) collisions