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Why heavy quarkonia?
● Well calibrated probe

–      and      pairs are produced early in the collision

– Number of heavy quarks conserved during the system evolution

● Copious production at the LHC

– ~100     pairs (central Pb-Pb)

– 5-6      pairs (central Pb-Pb)

● Cold Nuclear Matter (CNM) effects:

– Shadowing / gluon saturation effects

– Nuclear absorbtion (negligible at LHC)

– Coherent parton energy loss
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J/ψ at lower energy experiments

➢ J/ψ is strongly suppressed in central collisions at both SPS and RHIC energies, 
but:
➢ Similar R

AA
 pattern despite very different collision energies

➢ At RHIC, R
AA

(y=0) > R
AA

(1.2<|y|<2.2)
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Inclusive J/ψ at the LHC

➢ Much less suppression compared to lower energy (PHENIX) in central collisions
➢ Indication of less suppression at mid- than at forward rapidity
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Inclusive J/ψ at the LHC

➢ Models which include (re)combination agree with the data.
➢ Model uncertainties are dominated by the poor knowledge of the total cc cross-

section / CNM effects
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Inclusive J/ψ as a function of p
T

➢ Striking difference between LHC and RHIC at low-p
T 

➢ Evidence for (re)combination ?

PLB734 (2014) 314
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Inclusive J/ψ as a function of p
T

➢ Striking difference between LHC and RHIC at low-p
T 

➢ Evidence for (re)combination ?

PLB734 (2014) 314

➢ Stronger suppression seen at LHC for the high p
T
 J/ψ 
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Elliptic flow

➢ Strong elliptic flow observed for light particles and D mesons
➢ Is J/ψ inheriting any of the fireball collective flow via (re)combination?



14

Elliptic flow

ALICE:   PRL111(2013)162301
STAR:    arXiv: 1212.3304

Inclusive J/ψ

➢ The low p
T
 J/ψ hints toward a non-zero v

2
 in semi-central collisions
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Bottomonium
PRL109 (2012) 222301
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Inclusive Υ production vs centrality 
PRL109 (2012) 222301

➢ Strong suppression observed for the Y(2S) and Y(3S) states
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Inclusive Υ production vs centrality 
PRL109 (2012) 222301

➢ Strong suppression observed for the Y(2S) and Y(3S) states
➢ Inclusive Y(1S) is also strongly suppressed in central collisions, BUT

➢ There is a large (up to 50%) feed down from higher mass S-wave and P-
wave states

arXiv: 1407.7734
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Y production vs centrality

➢ Small contributions expected from (re)combination
➢ Thermal suppression of bottomonium states (Strickland) in a hydro model 

with shear viscosity
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Y(1S) production vs rapidity

ALICE: PLB 738 (2014) 361
CMS: PRL 109 (2012) 222301

➢ Stronger suppression for Y(1S) at forward rapidity compared to mid-rapidity
➢ The models underestimate the Y(1S) suppression at forward rapidity
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Pb-Pb summary
● Strong support for the (re)combination mechanism of charmonium production at 

low pT in Pb-Pb collisions:

– Integrated J/ψ RAA in central collisions much higher w.r.t. RHIC results

– The effect is concentrated at low pT 

– Indications of non-zero elliptic flow at forward rapidity

● Can we still use charmonia as a QGP probe at the LHC?

● Y(2S) and Y(3S) states are strongly suppressed in Pb-Pb collisions at all 
centralities

● The inclusive Y(1S) is also suppressed BUT feed-down effects must be taken 
into account precisely

– Is the direct Y(1S) still suppressed after the feed-down corrections?



21

p-Pb @ 5 TeV
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Inclusive J/ψ vs rapidity

➢ J/ψ is suppressed at mid-rapidity and in the forward direction, 
compatible with energy loss (+shadowing) models

➢ No suppression observed in the backward direction

Pb p

(forward)(backward)
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Inclusive J/ψ vs p
T

➢ J/ψ is suppressed at mid and forward 
rapidity, except for the highest p

T
 region

➢ R
pPb

 grows with p
T
, consistent with 

expectations from shadowing and energy 
loss calculations

➢ Early CGC calculation overestimate the 
suppression at forward rapidity

(forward)

p

(backward)

Pb
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ψ' at SPS and RHIC
PRL 111 (2013) 202301NA50, EPJ C49 (2007)

➢ ψ' suppressed at SPS in relatively small systems (like S-U), not in p-A
➢ Final state interactions of the formed resonance in the cold nuclear medium

➢ Puzzle?    ψ' suppressed more than J/ψ in d-Au at RHIC
➢ No significant differences between J/ψ and ψ' expected at RHIC and LHC 

from CNM effects or formation time
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ψ' at the LHC

➢ Strong ψ' suppression observed in p-Pb at 
both forward and backward rapidities

➢ Not expected from either shadowing or 
energy loss models

arXiv:1405.3796

arXiv:1405.3796

arXiv:1405.3796

(backward) (forward)

Pb p

(forward)

(backward)
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Charmonia vs event activity

➢ ψ' strongly suppressed in events with large activity in the ZDC
➢ The trend suggests a final state effect
➢ e.g. the pre-resonant state interaction with the comover cloud?                

Ferreiro et al. arXiv: 1411.0549 

➢ The J/ψ suppression is also dependent on event activity.

(backward)(forward)
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Inclusive Υ(1S)

(backward) (forward)

Pb p

ALICE: arXiv:1410.2234
LHCb-CONF-2014-003

➢ Indication of suppression at forward rapidity
➢ Consistent with no suppression at backward rapidity
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Inclusive Υ(1S)

➢ Fair agreement with various calculations 
including:
➢ 2->2 production model at LO (Ferreiro et al.)
➢ CEM at NLO (Vogt)
➢ Coherent parton energy loss (Arleo et al.)
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Inclusive Y(2S) and Y(3S)
p-Pb data: JHEP 04 (2014) 103 

➢ Excited states suppressed more w.r.t. to the ground state in p-Pb
➢ Similar effect seen for ψ' 

p-Pb

Pb-Pb
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Y(2S) and Y(3S)

➢ Y(nS)/Y(1S) ratios decrease with the increasing forward transverse energy and 
mid-rapidity charged particle multiplicity

➢ Large local particle density (i.e. comovers) breaks the Y states?
➢ Possible bias on the event multiplicity depending on the Y state?
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p-Pb summary
● The J/ψ and Y(1S) measurements in p-Pb are compatible with shadowing and 

parton energy loss expectations

● The large ψ(2S) suppression beyond the one seen for J/ψ in p-Pb cannot be 
explained within the current models. 

● The Y(2S) and Y(3S) states are also suppressed w.r.t. the ground state.

● The dependence of the ψ(2S), Y(2S) and Y(3S) suppression on event activity 
seem to indicate a comover-like final state effect in p-Pb collisions, not 
understood yet quantitatively
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Backup
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Inclusive J/ψ as a function of rapidity

➢ Strong rapidity dependence for low-p
T 
at y>3 (ALICE)

➢ CNM effects, (re)combination ?
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ψ' production

➢ No strong conclusion possible yet due to large uncertainties

ALICE p
T
<3

CMS p
T
>3

CMS p
T
>6.5
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p-Pb event activity

➢ Categorize events based on the 
multiplicity/energy measured with various 
detectors -> proxy to centrality

➢ Caveat: Correlation between multiplicity 
estimators and collision centrality much weaker 
compared to AA collisions -> posible biases!

➢ Assume p-Pb is a superposition of binary NN 
collisions and perform a Glauber fit, as for Pb-Pb

➢ Use the Glauber <N
coll

> to define the nuclear 

modification factor in p-Pb event activity classes
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Quantifying CNM effects

➢ Similar Bjorken-x ranges probed for Pb-Pb @ 2.76 TeV and p-Pb @ 5.02 TeV
➢ Assume 2->1 kinematics for the J/ψ production mechanism:

➢ Factorization of shadowing effects: CNM(Pb-Pb) = R
pPb

(y>0) x R
pPb

(y<0)
➢ At low p

T
, (re)combination effects are equal or even larger than the suppression 

effects, when CNM effects are taken into account
➢ A large suppression is observed at forward rapidity and high p

T
, where the CNM 

effects are negligible.
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Quantifying medium effects
-nuclear modification factor-

p-Pb, ALICE EPJ C74 (2014) 9, 3054            γ, CMS, PLB 710 (2012) 256
Pb-Pb, ALICE, Phys.Lett.B720 (2013)52       W±, CMS, PLB715 (2012) 66
Pb-Pb, CMS, EPJC (2012) 72                       Z0, CMS, PRL106 (2011) 212301

➢ Superposition of NN collisions → R
AA

=1
➢ Strong suppression for light hadrons observed 

at LHC in Pb-Pb collisions
➢ Weakly interacting particles are not affected by 

the QGP
➢ Photons, W± and Z0 R

AA
 is compatible with 

unity.

RAA=
d2 N AA /dpT dy

N coll×d2 N pp /dpT dy
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J/ψ as a function of p
T

➢ Less suppression observed at low p
T 
(ALICE)

➢ 50% of the J/ψ yield produced via 
(re)combination in transport models

➢ Stronger suppression and centrality 
dependence at high p

T 
(CMS, ALICE)
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p - Pb @ 5.02 TeV

E
Pb

=1.58 A TeV, E
p
=4 TeV

The center-of-mass of the collision is 
shifted by Δy=0.465 towards the proton 
fragmention direction

Pb-p,   -4.46<y<-2.96, L
int

 = 5.8 nb-1

p Pb
(p-going)

Pb p
(Pb-going)

p-Pb,  -1.37<y<0.43, L
int

 = 52 μb-1

           2.03<y< 3.53, L
int

 = 5.0 nb-1

p

p

Pb

Pb
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Inclusive J/ψ vs rapidity

➢ J/ψ is suppressed at mid-rapidity and in the forward direction, 
compatible with energy loss (+shadowing) models

➢ No suppression observed in the backward direction

Pb p

(forward)(backward)
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J/psi vs pt in event activity categories
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