### SFRS magnet testing: progress

#### Pierre Schnizer<sup>1</sup> Luigi Serio<sup>2</sup>,

<sup>1</sup>GSI Helmholtzzenztrum für Schwerionenforschung mbH. Plankstraße 1, D-64291 Darmstadt <sup>2</sup>CERN European Center for Nuclear Research CH-1211 Geneva 23

#### MAC 12 17 – 18 November 2014 @ GSI







#### 2 Collaboration



- 4 Current Status: Interface definition
- 5 Test Facility: further use

#### 6 Conclusions







- 2 Collaboration
- 3 Test facility planning
- 4 Current Status: Interface definition
- 5 Test Facility: further use
- 6 Conclusions





### **Testing Magnets**

Cryomagnetic module integrity (machine safety)

- Electric insulation quality
- Leak tightness
- Cool down behaviour
- Sensors connection, voltage taps
- Specification compliant (machine operation)
  - e.g. operation current with sufficient margin;
  - e.g. field length; iron quality, magnet end chamfering

・ロット 空マット 日マット

naa

- Fine tuning of the machine
  - e.g. analysis of particle curvature
  - e.g. imaging properties



### Testing Sc. Magnets for FAIR

- sc. accelerator projects → testing series @ LAB (e.g. Tevatron, SSC, RHIC, Nuclotron, LHC)
- $\bullet\,$  assigned to different labs  $\rightarrow\,$  "collaboration nature" of FAIR
  - GSI SIS100 dipoles
    - SIS100 quadrupole doublet modules (integrity tests)
    - SIS100 string test
    - retests for all FAIR accelerator magnets (operation period)

・ロット 空マット しょう

naa

- JINR build up of test facility for NICA magnets
  - $\bullet \ \rightarrow \ \text{collaboration on testing} \\ SIS100 \ \text{quadrupole units} \\$
- CERN testing all SuperFRS magnets



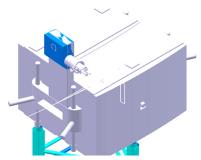
#### 2 Collaboration

- 3 Test facility planning
- 4 Current Status: Interface definition
- 5 Test Facility: further use

#### 6 Conclusions

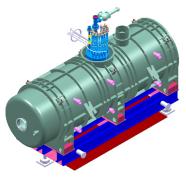





## **Testing SuperFRS Magnets**

- Collaboration between GSI  $\leftrightarrow$  CERN
- Established february 2013
- prepared and formed within the collaboration






### SuperFRS Magnets



SuperFRS Dipole

superferric, cold coil, warm iron, 1.6 T, 2 t cold mass, 60 t total



SuperFRS Multiplett superferric, cold coil, cold iron, quadrupole triplet, correctors up to 9 magnets, 65 t, 4.5 m high

# Testing SuperFRS: CERN WP Leaders

| Package                 | Group  |                        |
|-------------------------|--------|------------------------|
| Technical Coordinator   | TE/CRG | Luigi Serio            |
| Test Facility           | TE/MSC | Marta Bajko            |
| Magnetic measurements   | TE/MSC | Stephan Russenschuck   |
| Survey                  | EN/MEF | Dominique Missiaen     |
| Cryogenics              | TE/CRG | Antonio Perrin         |
| Power converters        | TE/EPC | Hugues Thiesen         |
| Quench protection       | TE/MPE | Reiner Denz            |
| Energy extraction       | TE/EE  | Knud Dahlerup-Petersen |
| Platforms & Structure   | EN/MEF | Mats Wilhelmsson       |
| Electrical power        | EN/EL  | Rene Necca             |
| Cooling and ventilation | EN/CV  | Michele Battistin      |
| Handling & transport    | EN/HE  | Ingo Ruehl             |
| ICE                     | EN/ICE | Phillipe Gayet         |
| Integration             | EN/MEF | Yvon Muttoni           |

HELMHOLTZ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

6.51

### **Boundary conditions**

- Collaboration agreement: GSI  $\leftrightarrow$  CERN
- CERN preparing for test
  - refurbishing compressors, utilities
  - procurement of power converters
  - planning of measurement program
- active interaction
  - cryo-infrastructure refurbishment

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

- layout of facility
- number of benches
- test equipment preparation





#### 2 Collaboration



- Current Status: Interface definition
- 5 Test Facility: further use

#### 6 Conclusions





| Nr. | Vorgangsname                |   |    |      | 201  | 5    |    | 2     | 016  |     |            | 201   | 7          |       | 2   | 2018 |    |    | 2  | 019  |     |      | 2020    |
|-----|-----------------------------|---|----|------|------|------|----|-------|------|-----|------------|-------|------------|-------|-----|------|----|----|----|------|-----|------|---------|
|     | 0 0                         | 0 | 24 | Q1 ( | 22 ( | 23 ( | Q4 | Q1 Q2 | 2 Q3 | Q4  | Q1         | Q2 (  | 23 Q4      | 4 Q   | 1 Q | 2 Q3 | Q4 | Q1 | Q: | 2 Q: | 3 Q | 4 Q  | 1 Q2 Q3 |
| 1   | Dipoles                     |   |    |      |      |      |    |       |      |     |            |       |            |       |     | -    |    |    |    |      | ¥.  |      |         |
| 2   | preseries                   |   |    |      |      |      |    |       | •    | 01. | 09.        |       |            |       |     |      |    |    |    |      |     |      |         |
| 3   | series start                |   |    |      |      |      |    |       |      |     |            | 13    | 04.        |       |     |      |    |    |    |      |     |      |         |
| 4   | series end                  |   |    |      |      |      |    |       |      |     |            |       |            |       |     |      |    |    |    |      | • : | 26.0 | 9.      |
| 5   | Multiplets                  |   |    |      |      |      |    |       |      | _   |            | _     | _          | -     |     | _    |    | -  | -  |      | _   | -    |         |
| 6   | presieries short multiplett |   |    |      |      |      |    |       | 4    | 22  | .09.       |       |            |       |     |      |    |    |    |      |     |      |         |
| 7   | preseries long multiplett   |   |    |      |      |      |    |       |      |     | <b>•</b> 1 | 2.01. |            |       |     |      |    |    |    |      |     |      |         |
| 8   | start of series             |   |    |      |      |      |    |       |      |     |            |       | <b>4</b> 2 | 28.09 | 9.  |      |    |    |    |      |     |      |         |
| 9   | end of series               |   |    |      |      |      |    |       |      |     |            |       |            |       |     |      |    |    |    |      |     |      | 11.03.  |

| Module                | pcs.     | start | end                | month | average  |
|-----------------------|----------|-------|--------------------|-------|----------|
| dipole<br>multipletts | 21<br>31 |       | 09/2019<br>03/2020 |       | ≈1<br>≈1 |

・ロト・「「「・山下・山下・山下・山下・山下・

GSI

## **Testing: Matching Delivery**

- 2 modules per month
- estimation of testing time
- based on today's knowledge
  - cool-down, warm-up
  - equipment reliability
  - available equipment
  - basis of further evaluations
- based on long multipletts (most complex module)
- CERN's evaluation on following slides (courtesy of V. Benda, J. Bremer, O. Pirotte)

200





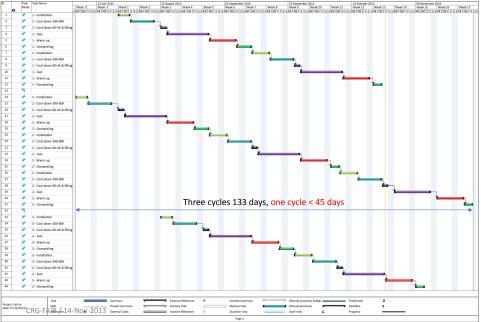
# **Updated** assumption



- Testing speed
  - The same as magnet production
  - For 53 magnet to be tested
  - Working weeks per year
  - Number of magnets
- Cooling speed
  - Cooling speed from 300 K 80 K
  - Cooling speed from 80 K 5 K
  - Warming speed from 5 K 80 K
  - Warming speed from 80 K 300 K
  - Maximum dT on a magnet
  - Weight of magnets tested in parallel
- Phases
  - Magnet installation
  - Cool down from 300 K 80 K
  - Cool down from 80 K 5 K & filling
  - Testing
  - Warm up from 5 K to 300 K
  - Dismantling
- Operation
  - Number of shifts for magnetic measurement:
  - Automatic modes:
  - Manual modes:
  - Work during weekends:
  - Magnetic test only on one bench

- 2magnet /month 2.4 year in total 46 53
- 1 K/h no limitation no limitation 1 K/h 50 K 45 t

4 days (working), update from 3 days 8 days 2 days 10 days (working) 9 days 3 days (working)


#### 1

Cool down, filling, warm up Installation, test, dismantling No; only automatic modes Only one set of power supplies



#### Updated base line





### **Testing: Matching Delivery**

- 2 modules / month
- $\bullet\,$  cycle 45 days  $\rightarrow$  3 test benches
- check on:
  - space in building 180
  - available cold box / precooler
  - number of power converters
  - required measurement systems

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A



### **3 Benches: Impact on equipment**

#### • planning:

- 1 cool down
- 1 testing @ cold
- 1 at warm up
- infrastructure
  - cold box: sufficient for 1 cool down / 1 being tested

naa

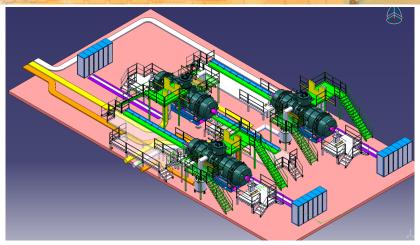
- new precooler required (warm up with gas)
- power converters: 1 set (9 power converters)
- magnetic measurement equipment: 1 set
- matching electrical power / cooling water



### Space 180: Boundary conditions

#### Space required for

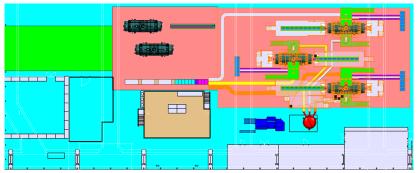
- measurement benches:
  - the magnet module (multiplet, dipole)
  - measurement device area (e.g. long shaft for rotating coil probe)


・ロット 空マット しょう

Sac

- fixed installations (feed boxes, power converters, cabling and pipeing)
- service area (e.g. scaffolds)
- storage / loading / unloading (only place at CERN)
- one of three users in building 180




### SuperFRS: Layout of Benches



Courtesy of CERN Location of the multiplets, scaffolds, power converters, supply infrastructure, electronics cabinet

500

### SuperFRS: Layout of Benches



Courtesy of CERN multiplets on the bench, storage space (for 1), intermediate storage (for 1)

イロト イポト イヨト イヨト

naa



## 3 benches built up

- $\bullet$  3 operation modes  $\leftrightarrow$  3 benches
- current planning: per month, 2 modules tested, 2 modules produced ← adjustment of dipole production made
- margin (retests, planning inaccuracy, shut down period)
  - cool down speed 1K/h  $\rightarrow$  from magnets  $\rightarrow$  cooling power allows 2 K/h
  - testing time  $\rightarrow$  defined by MM  $\rightarrow$  estimation based on multiplet with 9 magnets
  - no cross links  $\rightarrow$  longer real world measurement time  $\rightarrow$  linear scale in project time
  - limited mitigation: increase of shifts (currently 1 shift)

・ロット 空マット しょう

Sac



- 2 Collaboration
- 3 Test facility planning
- 4 Current Status: Interface definition
  - 5) Test Facility: further use

#### 6 Conclusions





### Interface definition

#### $\bullet~\text{CERN} \rightarrow \text{realisation phase}$

- procurement of cyrogenic infrastructure → magnet interface → forces during pressure test (nominal pressure 20 bar) → self contained system
- safety documentation  $\rightarrow$  agreement on standard, testing procedures
- magnetic field measurements
- electrical systems / power converter / quench detection / magnet protection
- signal interface lists
- GSI clarifying same topics
  - (reviewing) design of the machine
  - test station  $\leftarrow$  follows machine
  - test station  $\rightarrow$  definition  $\rightarrow$  drives machine

・ロット 空マット しょう

Sac

# Interface specification: Example MM

| main dipoles<br>main field component<br>field quality $\Delta B/B$<br>horiz. spatial resolution | 5 · 10 <sup>-4</sup><br>5 · 10 <sup>-5</sup><br>30         | mm         |                                     |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------|-------------------------------------|
| main quadrupoles<br>main field component<br>other harmonics<br>axis<br>angle                    | 5 · 10 <sup>-4</sup><br>5 · 10 <sup>-5</sup><br>0.2<br>0.5 | mm<br>mrad |                                     |
| other magnets<br>main field component<br>other harmonics<br>axis<br>angle                       | 1 · 10 <sup>-3</sup><br>2 · 10 <sup>-4</sup><br>0.2<br>0.5 | mm<br>mrad | (up to order 10 )<br>except steerer |

HELMHOLTZ I GEMEINSCHAFT

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト の Q ()

## Interface specification: Example MM

measurement systems:

- series
  - dipoles  $\rightarrow$  flux meters
  - multiplets  $\rightarrow$  rotating coil probes
- pre-series
  - dipoles  $\rightarrow$  flux meters
  - $\bullet \ \ \text{multiplets} \to \text{rotating coil probes}$

イロト イポト イヨト イヨト





- 2 Collaboration
- 3 Test facility planning
  - 4 Current Status: Interface definition
- 5 Test Facility: further use

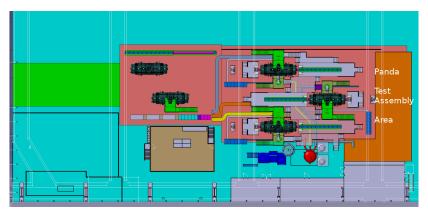
#### 6 Conclusions





# Further test facility use: Energy buncher

- magnet lists above: without energy buncher
- $\bullet~$  but  $\rightarrow$  technical planning  $\rightarrow$  feasibility checks made
- technical limitations investigated
- multiplets
  - different design  $\rightarrow$  "series multiplets"
  - $\bullet \ \rightarrow \ \text{technically testable at CERN}$
- dipoles
  - design currently revised
  - $\bullet \mbox{ mass} \rightarrow \mbox{ significantly reduced} \rightarrow \mbox{ within test facility handling capabilities}$
  - not fully designed  $\rightarrow$  current technical planning  $\rightarrow$  taken in consideration as far as possible


・ロット 空マット 日マット

#### Further test facility use: Panda

- Panda detector magnet → CERN/PH → assembly and test (of cryostated coil) → same building
- check of impact on testing SuperFRS
- $\bullet \,$  adjacent area  $\rightarrow$  no conflict
- Panda magnet (cryostated coil) test  $\rightarrow$  "only" functionality (no MM)  $\rightarrow$  1-2 month  $\rightarrow$  2 benches for SuperFRS magnet testing



### Further test facility use: Panda



Assembly and test area, adjacent to SuperFRS test area; cryosupply shared for 2 month, (check on stray field effects [electronics in cabinets, MM])







- 2 Collaboration
- 3 Test facility planning
- 4 Current Status: Interface definition
- 5) Test Facility: further use

#### 6 Conclusions







Testing SuperFRS@CERN

- currently
  - infrastructure refurbishment running
  - 3 test benches
  - interface documents under approval
  - procurement of required installations/systems
- next steps
  - $\bullet \ \ \text{measurement program} \to \text{in detail planning}$

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

testing procedures

