In-beam and lab tests

 $\label{eq:M.Borri} \begin{array}{l} {\sf M.Borri} \mbox{ (STFC)} \\ {\sf on behalf of the teams at Daresbury, Edinburgh, Liverpool} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Overview of silicon tracker.
- Devices under test.
- Tests prior in-beam period.
- In-beam test.
- Tests after in-beam period.
- Conclusion.

R3B Si-tracker.

- It is a micro-vertex detector.
- Total of 116,736 readout channels.
- It is shaped like a lamp-shade.
- Three layers: one inner; two outer.
- 2x12 ABC-detectors for outer layers.
- 6 BD-detectors for inner layer.
- ASICs are wire bonded to sensors making a detector.
- Sensors are Double Sided Silicon Micro-Strips.

Sensor specifications									
Туре	double	sided							
Bulk doping	n-ty	/pe							
Bulk thickness	300 µm [ABC]	100 µm [BD]							
Strip pitch	50	μm							
Strip width	38	μm							
Strip length	varia	able							
Strip stereo angle	16.	2°							
Guard rings	9 floa	ating							
I-leak per strip	3.25 nA/cm	[<100 nA]							
Strip capacitance	2.3 pF/cm	[<80 pF]							

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The ASIC.

Daisy chain

- Designed at STFC Rutherford Appleton Lab.
- The R3B ASIC is intended for reading out signals from the N and P strips.
- The chip provides three informations:
- 1. space coordinate.
- 2. energy deposit.
- 3. time of the hit.

ASIC specifications									
Size	13x6 mm ²								
CMOS process	AMS 0.35 μ m								
Power consumption	< 1.5 W/ASIC								
Channels per chip	128								
Data rate	< 5 kHz/channel								
Energy range	0-50 MeV								
Time stamp	100 MHz								

 Readout based on a daisy chain sequence.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Four ASICs are connected in a chain.
- They are not adjacent to each other.
- Rate in each ASIC proportional to the associated strip length.

э

Detectors and lab tests.

- Only ABC detectors.
- Problem in building them.
- Sensor IVs are systematically worse after detector production.
- Limited amount of time available to debug and test before test-beam.

Det	Built	Broken ASICs	Went to GSI	Lab.Test before GSI	Lab.Test after GSI
101	End of Jul	1,5,9,13 (N-side)	Yes	Yes	Yes
102	End of Aug	N/A	No	No	Yes
103	Beginning of Sept	1,5,9,13 (P-side)	Yes	No	Yes
104	Beginning of Sept	15 (N and P-side)	Yes	No	No

Lab tests before GSI test run

- Initial set of electrical tests (ETs) identified and implemented in MIDAS-DAQ.
- ETs performed on bare ASICs [not presented].
- Testing Det101 since August.
- Focus on:
- 1. IVs.
- 2. Channel response.
- 3. Noise.
- 4. Charge collection.
- Test performed with: 100MHz input-clock. energy threshold@2.4MeV.

Sensor electrical test	I-V measurement	100%
Front-end operation	Energy threshold	90%
	Time-stamp threshold	50%
	Peak time	100%
	Noisy channels	50%
	ADCtoEnergy calibration	70%
	Cross-talk	50%
	Timewalk and jitter	0%
Detector performance	Charge collection efficiency	20%
	Signal-over-noise	20%

Det101: IV characteristics.

- Det101 was built with sub-standard sensors.
- I-leak was ~8 μA@65V after A,B and C sensors were wire bonded together.
- I-leak was ~40 μA@65V after ASICs were wire-bonded to C sensor.
- I-leak partially-recovered for unknown reasons when detector was relocated in another lab.

Det101: pulse-injection tests.

Pulse-std.dev. Vs Channel N-side ask-time 4 Au eak-time 7.0us 256 1024 1280 1536 Channel[a.u.] Pulse-std.dev. Vs Channel P-side Peak-time 1 0 esk-time 4 Aug

Std.Dev.[ADC]

td.Dev.[ADC]

- Measured in lab.T9.
- Test-pulse injected in each individual channel.
- Mean and std.dev. retrieved for each channel.
- ASIC to ASIC variations of pulse mean.
- Input capacitance \propto strip length.
- Lleak \propto strip length.
- Higher noise for longer strips.
- More uniform and lower noise with high shaping time.
- No obvious dependency to leakage pattern on P-side.
- Possible to use sub-standard sensors ?

N.B. chain 1 (n side) is not working.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Det101: noise vs leakage current.

0.5

256

- Measured in lab.T4.
- Noise also decreased when detector was relocated in another lab.
- Effect of I-leak on noise was investigated.
- ASICs ware used as heaters.
- Det101 was placed in vacuum.
- Chiller temperature was scanned from 5C to 20C, steps of 5C.
- Peak-time 7.0 μs.
- No obvious dependency of noise from I-leak.

N.B. chain 1 (n side) is not working.

Channel[a.u.]

Det101: charge collection.

- Mixed alpha source: Pu-239 (5.155MeV,1kBq); Am-241 (5.486MeV,1kBq); Cm-244 (5.805MeV,1kBq).
- Single channel spectra, no clustering.
- Gain measured with source is biased by charge sharing effects.
- Threshold step measured with source uses a rough method.
- Values are encouraging.

		Comparison	ı	
		theoretical	internal pulse	α -source
Gain	[ADC/eV]	6.45e-5	6.2e-5	6.31e-5
Eth-step	[keV/DN]	24.7	23.7	29.1

N.B. internal-pulse values quoted for bare asics.

In-beam test @ GSI.

- GOAL: study reactions produced by a Ca48 beam hitting a CH2 target.
- MEAN: detect correlations of signals produced by particles in CALIFA and Si-tracker.
- OUTCOME: we acquired two data sets which could enable finding correlations.
- BUT: To achieve this goal we had to adopt several work around to overcome several difficulties.
- The scientific goal allowed us to test our detector system in terms of:
- 1. building.
- 2. mounting*.
- 3. operating.
- 4. taking data.
- 5. analysing data.

* See A.Grant's talk in Infrastructure session (08/12/2014).

2 / 2014									October 2014										Schedule as of 14-Okt-2014																	
		We	ek	40		1		_		W	Week 41 Week 42 Week 43									W	/eek 44															
1	Γ	2	3	4		5	6	Τ	7	8	9	Τ	10	-11	12	13	14	13	5	16	17	10	19	20	21	22	23	24	25	25	2	7	28	29	30	31
U20	U207, Backe/Block, 48Ca (EZR), Y7 SHIPTRAP U259, D						Düllim	ann,	48C4	a, X	8					U207,	Bac	ke/Bi	ock, 4	BCa, 1	/7 SH	PTR	RAP		UB04, Groening/Spill er, U, UNILAC											
	U	259,	DGI	Iman	n, 4	8Ca	L, X	8			U28	2,	Ortr	er/B	azevi Exp	zzevic, Ca, 3.6MeV/u, pµA, Single Shot Experiment, 5Hz, 26 Ca, X6								IIO, Iolz, X6		U2	59, Dü	liman	n, 49	2a,)	68					
			000	0, Ba	rth/l	Hol	Eng	per,	p (8	IUCI	5), UP	411	AC																		Τ					
	S438 Simon, Ca, block sharing, HTC S401Heuser/Kis, Ca, block sharing, HAD						Ca, 0, 500 AD Stati, 5431, 5438, 5431, 545						SOO Spill U, S	10, Ier, 119																						
S	S438 Simon, Ca, block sharing, HTC S401Heuser/Kis, Ca, block sharing, HAD						S00 0, Spil ler,	Stoto, Spiller, U, SIS																												
SN	SMAT, Trautmann, 300-400 MeV/u, Sm, HTA S401Heuser/Kis, Ca, block sharing, HAD							S00 0, Spil ler,	SL	SMAT, Trautmann, U, FRS U, 300-			S4 Plat ush ma	i11, SPur otha n, U,	1, S438, Pur Taelb,Si tha mon, U, Plaß/Purushothaman, U , U, HTC, FRS																					
	E082, Litvinov, Sm, FRS-ESR, ESR						E000, Steck, U, soweit möglich. ESR E008/E116, Bräuning-Demian, U, ESR, HTA																													

Burkhard Kolb, Phone +49-6159-71 2667, E-Mail: beamtime@gsi.de

0/14/2014 3:48:00 PM

Setup.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We took 3 detectors to GSI.
- Det101 and Det104 are in front of CALIFA petals.
- Det103 does not have a CALIFA petal behind it.

Time line.

- Det103 and 104 mounted

- 20/09 ¢Equipment dispatched to GSI
- 21/09 •3/3 detectors installed in vacuum chamber Corrupted data coming from detectors Repeated data coming from detectors
- 22/09 Chamber goes in beam line
- 25/09 DAQ successfully transfers data to MBS
- 27/09 Operating successfully 0.5/3 detectors Keep searching cause of data corruption
- 01/10 First day of beam •No solution to data corruption
 - Operating ~(0.5-0.25)/3 detectors
- 03/10 Lowered energy threshold, higher data rate (noise) Time ordering issues with MBS
- 05/10 Work around to time ordering
- 06/10 Acquire data in best possible operating condition
- 09/10 Last day of beam
- 14/10 Equipment returned to the UK

More info at:

 $\label{eq:https://docs.google.com/spreadsheets/d/1H9xHbSwvJV9QKgueFMPMrP5YESBHoB9va2_0tWnDqs/edit?pli=1#gid=0$

Data taking and analysis.

	Taget threshold	settings
	N-side	P-side
Noise floor	\sim 395 keV	\sim 790.4 keV
En-threshold	${\sim}100~{\rm keV}$	\sim 790.4 keV
	E-kin	Edep in 300 μ m of Si
α	${\sim}100~{ m MeV}$	\sim 4.7 MeV
proton	${\sim}250~{\rm MeV}$	${\sim}250~{\rm keV}$
	Run290_37	777
Target	Beam type	Beam energy
CH2	Ca48	550MeV

[asic]

- Used only Det101.
- Enabled (50-25)% of channels.
- Enabled long-strip channels for wide area.
- It has high noise floor.
- P-side noisier that N-side in cave C.
- 250 MeV protons will give only 1D coordinate in position.
- Analysis started in R3B-root (A.Estrade, M.Labiche, W.Powell).
- Delayed by problem with inversion in time stamp: was bug in firmware.

▲ロ → ▲ 圖 → ▲ 画 → ▲ 画 → の Q ()~

In the lab after in-beam period.

- We investigated our main problems:
- o Data corruption: main cause of limited success in-beam.
- o Data repetition.
- o IV problem.
- We want to address the following questions:
- o Are there any risks for the third iteration of the ASIC ?
- o Why can we not build optimal detectors ?
- o What do we need to improve in our detector system ?

Data corruption.

Findings:

- Corrupted data are received from the detector (e.g. random side ID).
- Corruption is produced when the ASICs are not properly biased.
- Corruption is also produced by external sources of noise.
- Corruption seems not to be produced by high data rate.

Consequences:

- Sufficient to use existing sense-line ?
- Grounding needs to be optimized.

De	t101	
Condition	1st trial	2nd trial
All FE on; Scroll pump off	No data corr. (14h)	No data corr. (9h)
All FE on; Scroll pump on	No data corr. (14h)	-
All FE on; Scroll pump off; Plug switching	Yes data corr.	Yes data corr.
All FE on; Scroll pump on; Plug switching	Yes data corr.	Yes data corr.
FE on chain 0,2,4,6; Scroll pump off	Yes data corr.	Yes data corr.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Data repetition.

Findings:

- Identical data words were received during data taking.
- Most of repeated data words were produced by a bug in the firmware. This is fixed.
- After the fix, it is still possible to observe data repetition.

Consequences:

• Simulate the chain response before ASIC submission.

Rate set to 900kHz/chain (design limit at 1MHz/chain)												
		Det101		Bare ASICS								
PulseInjection	PulseWidth	PulseDelay		1st trial	2nd trial	3rd trial						
8 channels/ASIC	555*10ns	3000*10ns	Yes rep.	No rep.(1h)	No rep.(1h)	No.rep(9h)						
32 channels/ASIC	4222*10ns	10000*10ns	Yes rep.	Yes rep.	Yes rep.	No rep.(4h)						
128 channels/ASIC	6888*10ns	50000*10ns	Yes rep.	No rep.(1h)	No rep.(1h)	No rep.(15h)						
128 channels only in ManEnc	4222*10ns	10000*10ns	No rep.	No rep.(1h)	-	-						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

IV characteristics.

- Det101 can only be biased with floating psu.
- Det103 was systematically taken apart.
- Wire bonds were removed from different sensor pieces.
- IV recovered when only the C piece was connected.
- IV is the same with grounding/floating power supply.
- Cross-piece in carbon fibre (CF) frame is conductive.
- High risk of shorts between the silicon sensor and the CF frame.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusion.

- Four ABC detectors were built.
- Systematic increase in leakage current after building.
- Preliminary lab characterization of detectors.
- We acquired data which could enable finding correlations between CALIFA and Si-tracker (our goal!).
- We completed the whole cycle of building, mounting, operating, data taking and data analysis.
- The system weaknesses were exposed.
- Debugging/improvement was carried out and is still ongoing.