Feasibility study: proton time-like electromagnetic form factors with the $$\bar{\rm P}ANDA$$ experiment

A. Dbeyssi¹, <u>D. Khaneft</u>¹, M. Zambrana¹, M.C. Mora Espí¹, Y. Wang³, F. Maas¹, D. Marchand², E. Tomasi-Gustafsson³

¹Helmholtz-Institut Mainz, Mainz, Germany

²Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay cedex, France ³IRFU, SPHN, CEA, Saclay, France

> PANDA Collaboration Meeting 3-12-2015

Helmholtz-Institut Mainz

 $\bar{p}p \rightarrow e^+e^-/\pi^+\pi^-$

Nucleon structure: electromagnetic form factors (FFs)

Electromagnetic form factors parameterize hadronic current space-like $q^2 \rightarrow$ time-like s^2

How much do we know about FFs?

Published experimental data on $R=|G_E|/|G_M|$, more data under analysis from BESIII and SND/Novosibirsk

How PANDA can contribute?

Kinematical reach of the PANDA experiment: 5.1-30.0 [GeV/c]² $\sigma(\bar{p}p \rightarrow e^+e^-) \sim 1/s^2$, $R = |G_E|/|G_M|$

How to measure FFs?

Ingredients:
$$\frac{d\sigma}{d\cos\theta} = const(s)[|G_{M}|^{2}(1+cos^{2}\theta) + \frac{|G_{E}|^{2}}{\tau}(1-cos^{2}\theta)]$$

- Angular distribution of $ar{p}p
 ightarrow e^+e^-$: R=|G_E|/|G_M|
- $ar{p}p
 ightarrow e^+e^-$ differential cross section, need luminosity: $|{\it G_E}|$ and $|{\it G_M}|$

How to measure FFs – Method II

Another option? We can fit $\cos^2 \theta$ distribution. Advantage – linear fit.

$$y={m a}+{m b}\cos^2 heta$$
 , with ${m a}\equiv\sigma_0$, ${m b}\equiv\sigma_0{\cal A}$

$$\sigma_{0} = \frac{\pi \alpha^{2}}{2\beta s} \left(|G_{M}|^{2} + \frac{1}{\tau} |G_{E}|^{2} \right)$$
$$\mathcal{A} = \frac{\tau |G_{M}|^{2} - |G_{E}|^{2}}{\tau |G_{M}|^{2} + |G_{E}|^{2}} = \frac{\tau - R^{2}}{\tau + R^{2}}$$

Background – $\bar{p}p ightarrow \pi^+\pi^-$

Background, including three-body final states, kinematically very different.

Background of two heavy charged particles $(k^+k^-, \text{ etc})$ in the final state:

- Kinematically very different from signal
- Detector response very different from signal
- Cross section is high

The most challenging background is $\bar{p}p \rightarrow \pi^+\pi^-$ due to:

- Kinematically very similar to signal
- Detector response very similar to signal
- Cross section is by a factor of 10^6 higher

Background event generator

low energy	transition region	high energy
data: - Eisenhandler et. al., NP B96 (1975) model: - Legendre polynomial fit	6 interpolation	9 s (GeV/c) ² data: - A. Eide et. al., NP B60 (1973) - T. Buran et. al., NPB 116 (1976) - C. White et. al., PRD 49 (1994) model: - Regge Theory J. Van de Wiele and S. Ong, EPJA 46 (2010)

Event generator was developed in Mainz by M. Zambrana.

Cross section and expected number of events

	signal		background	
	$ar{p} p o e^+ e^-$		<u></u> рр -	$\rightarrow \pi^+\pi^-$
s [GeV/c] ²	$\sigma~[{\sf pb}]$	Ν	$\sigma~[\mu {\sf b}]$	Ν
5.4	417.39	834800	101.06	202.12·10 ⁹
7.3	55.6	111100	13.09	26.18·10 ⁹
8.2	24.61	49210	2.95	5.9·10 ⁹
11.1	3.2	6503	0.56	1.12·10 ⁹
12.9	1.2	2328	0.23	4.6·10 ⁸
13.9	0.73	1466	0.16	3.18·10 ⁸

Integrated luminosity: $\mathcal{L} = 2fb^{-1}$ $|\cos \theta_{cm}| < 0.8$

Method I

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $|G_E|/|G_M| = 1$
- s [GeV/c]²: 5.4, 7.3, 8.2, 11.1, 12.9, 13.9

*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Method I

Method II

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $|G_E|/|G_M| = 1$
- s $[GeV/c]^2$: 5.4, 7.3, 8.2, 11.1, 12.9, 13.9

Signal:

- Flat angular distribution (phase space) + PHOTOS
- Scaled to the expected statistics
- s [GeV/c]²: 5.4, 8.2, 13.9

*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Method I

Method II

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $|G_E|/|G_M| = 1$
- s [GeV/c]²: 5.4, 7.3, 8.2, 11.1, 12.9, 13.9

Signal:

- Flat angular distribution (phase space) + PHOTOS
- Scaled to the expected statistics
- s $[GeV/c]^2$: 5.4, 8.2, 13.9

Common features:

- Additional samples for signal efficiency determination, ${\sim}10^6$ events at each energy
- Background:

M. Zambrana's event generator at s= 5.4, 8.2, and 13.9 $[\mbox{GeV}/c]^2$ 10^8 events at each energy

*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Event selection criteria

Event selection criteria

Particle identification:

- PID_c [%] combined probability
- PID_s [%] individual detector probability
- dE/dx_{STT} [a.u.] energy deposited in the central tracker
- *E_{EMC}*/*p* [GeV/(GeV/c)] ratio of deposited energy in the EMC over reconstructed momentum
- EMC LM [a.u.] lateral momentum
- $\bullet\,$ EMC E1 [GeV] energy deposited in the cluster's central crystal

Event selection criteria

Particle identification:

- PID_c [%] combined probability
- PID_s [%] individual detector probability
- dE/dx_{STT} [a.u.] energy deposited in the central tracker
- *E_{EMC}*/*p* [GeV/(GeV/c)] ratio of deposited energy in the EMC over reconstructed momentum
- EMC LM [a.u.] lateral momentum
- EMC E1 [GeV] energy deposited in the cluster's central crystal

Kinematical cuts:

- heta+ heta' [degree] sum of polar angles in the $ar{p}p$ center of mass frame
- $|\phi-\phi'|$ [degree] difference of azimuthal angles in the $ar{p}p$ center of mass frame
- *M_{inv}* [GeV/c]² invariant mass

Method I – Signal event selection

Step 0: One positive and one negative track

Dmitry Khaneft

 $\bar{p}p \rightarrow e^+e^-/\pi^+\pi^-$

Method I – Signal event selection

Step 1: Cut values used for analysis

S	[GeV/c] ²	5.4	7.3	8.2	11.1	12.9	13.9
PID _c	[%]	>99	>99	>99	>99	>99	>99
PID _s	[%]	>10	>10	>10	>10	>10	>10
dE/dx _{STT}	[a.u.]	>5.8	>5.8	>5.8	>5.8	>5.8	>6.5
E _{EMC} /р	[GeV/(GeV/c)]	>0.8	>0.8	>0.8	>0.8	>0.8	>0.8
EMC LM	[a.u.]	<0.75	<0.75	<0.75	<0.75	-	-
EMC E1	[GeV]	>0.35	>0.35	>0.35	>0.35	>0.35	>0.35
$\theta + \theta'$	[degree]	175 < heta + heta' < 185					
$ \phi - \phi' $	[degree]	$175 < ert \phi - \phi' ert < 185$					
M _{inv}	$[GeV/c]^2$	-	-	>2.2	>2.2	>2.2	>2.7

Method I – Reconstruction efficiency

Method I – Efficiency

	signal	background
<i>s</i> [GeV/c] ²	e^+e^-	$\pi^+\pi^-$
5.4	50.9%	$6.8 \cdot 10^{-6}\%$
7.3	53.5%	-
8.2	46.3%	$2.0 \cdot 10^{-6}\%$
11.1	46.2%	-
12.9	46.6%	-
13.9	38.7%	$2.9 \cdot 10^{-6}\%$

Angular range $|\cos \theta| \le 0.8$

Good signal efficiency, background suppression factor of 10^{-8}

Method I – Extraction of FFs

Method I – Extraction of FFs

• Angular distribution of events $\rightarrow R = |G_E|/|G_M|$ Fit function:

$$\# events = \mathcal{L} \times \frac{d\sigma}{d\cos\theta} = C_1[(1 + \cos^2\theta) + \frac{|\mathbf{R}|^2}{\tau}(1 - \cos^2\theta)]$$

• Angular distribution of events $\rightarrow R = |G_E|/|G_M|$ Fit function:

$$\#events = \mathcal{L} \times \frac{d\sigma}{d\cos\theta} = C_1[(1 + \cos^2\theta) + \frac{|\mathbf{R}|^2}{\tau}(1 - \cos^2\theta)]$$

• Luminosity \rightarrow cross section \rightarrow $|G_E|$ and $|G_M|$ Fit function:

$$\frac{d\sigma}{d\cos\theta} = C[|\mathbf{G}_{\mathbf{M}}|^2(1+\cos^2\theta) + \frac{|\mathbf{G}_{\mathbf{E}}|^2}{\tau}(1-\cos^2\theta)]$$

 $\Delta \mathcal{L}/\mathcal{L}=3\%$ assumed for cross section calculation

Method I – Events and cross section

Signal events (left) and cross section (right)

Method I – Results for $R = |G_E|/|G_M|$

Expected statistical uncertainties on $|G_E|$ and $|G_M|$ with $\Delta \mathcal{L}/\mathcal{L} = 3\%$

s [GeV/c] ²	$ G_E \pm \Delta G_E $	$ G_M \pm \Delta G_M $
5.4	0.122 ± 0.004 [3.3%]	0.121 ± 0.002 [1.7%]
7.3	0.062 ± 0.003 [4.8%]	0.058 ± 0.001 [1.7%]
8.2	0.044 ± 0.003 [6.8%]	0.044 ± 0.001 [2.3%]
11.1	0.019 ± 0.003 [15.8%]	0.020 ± 0.001 [5.0%]
12.9	0.015 ± 0.003 [20.0%]	0.012 ± 0.001 [8.3%]
13.8	$0.011 \pm 0.005 ~\textbf{[45.4\%]}$	$0.011 \pm 0.001 ~ \textbf{[}9.0 \textbf{\%]}$

Step 0:

One negative and one positive track with $\theta+\theta'$ closest to 180°

Step 1:

Cut values used for analysis

5	[GeV/c] ²	5.4	8.2	13.9
PID _c	[%]	>99	>99	>99.5
PID _s	[%]	>10	>10	>10
dE/dx _{STT}	[a.u.]	> 6 .5	>5.8	0 or > 6.5
E _{EMC} /р	[GeV/GeV/c]	>0.8	>0.8	>0.8
EMC LM	[a.u.]	<0.66	<0.75	<0.66
EMC E1	[GeV]	>0.35	>0.35	>0.35
heta+ heta'	[degree]	175	$< \theta + \theta'$	' < 185
$ \phi - \phi' $	[degree]	175	$< \phi - \phi $	' < 185
M _{inv}	[GeV/c] ²	-	>2.2	>2.7

Differences in cuts with Method I are highlighted in blue

Method II – Reconstruction efficiency

Method II – Efficiency

	signal	background
<i>s</i> [GeV/c] ²	e^+e^-	$\pi^+\pi^-$
5.4	41%	$1.9 \cdot 10^{-6}\%$
8.2	44.6%	$9.8 \cdot 10^{-7}\%$
13.9	40.8%	$1.9 \cdot 10^{-6}\%$

Angular range $|\cos \theta| \le 0.8$

Good signal efficiency, background suppression factor of 10^{-8}

Method II – Extraction of FFs

The ratio $R = |G_E|/|G_M|$, $|G_E|$, and $|G_M|$ can be extracted from $\cos^2 \theta$ distribution using:

$$y = \mathbf{a} + \mathbf{b}\cos^2{\theta}$$
, with $\mathbf{a} \equiv \sigma_0$, $\mathbf{b} \equiv \sigma_0 \mathcal{A}$
 $\sigma_0 = \frac{\pi \alpha^2}{2\beta s} \left(|G_M|^2 + \frac{1}{\tau}|G_E|^2
ight)$
 $\mathcal{A} = \frac{\tau |G_M|^2 - |G_E|^2}{\tau |G_M|^2 + |G_E|^2} = \frac{\tau - R^2}{\tau + R^2}$

Similar to the Method I:

- Angular distribution of events $\rightarrow R = |G_E|/|G_M|$
- Luminosity \rightarrow cross section \rightarrow $|G_E|$ and $|G_M|$

Method II – Events

The simulation input and expected statistical errors on $R = |G_E|/|G_M|$, $|G_E|$, and $|G_M|$.

	input		input		
<i>s</i> [GeV/c] ²	R	ΔR	$ G_{E,M} $	$\Delta G_M $	$\Delta G_E $
5.4	1	0.014 [1.4%]	0.1215	0.002 [1.6%]	0.002 [1.6%]
8.2	1	0.050 [5.0%]	0.0435	0.001 [2.3%]	0.002 [2.3%]
13.9	1	0.407 [40.7%]	0.0110	0.001 [9.1%]	0.004 [9.1%]

Method II – Results

Two methods – Results

Method I and Method II are equivalent

Dmitry Khaneft

Summary

Two independent feasibility studies were performed:

- Good signal efficiency of 39-54%
- Background rejection factor of $\sim 10^8$
- Extraction of $R = |G_E|/|G_M|$ is possible for 5.4 < $s < 12.9[GeV/c]^2$ - precision 1.5-56%
- With precise luminosity measurements extraction of $|G_E|$ and $|G_M|$ will be possible for $5.4 < s < 12.9[GeV/c]^2$
 - precision for $|G_E|$ 3.3-45.4%
 - precision for $|G_M|$ 1.7–9.0%
- We studied reduced luminosity case (See talk by A. Dbeyssi):
 - Reduced range for FFs measurements: $5.4 < s < 10.0 [GeV/c]^2$
 - Relative error scales as $\sqrt{10}$

Summary

Two independent feasibility studies were performed:

- Good signal efficiency of 39-54%
- Background rejection factor of $\sim 10^8$
- Extraction of $R = |G_E|/|G_M|$ is possible for 5.4 < $s < 12.9[GeV/c]^2$ - precision 1.5-56%
- With precise luminosity measurements extraction of $|G_E|$ and $|G_M|$ will be possible for $5.4 < s < 12.9[GeV/c]^2$
 - precision for $|G_E|$ 3.3-45.4%
 - precision for $|G_M|$ 1.7–9.0%
- We studied reduced luminosity case (See talk by A. Dbeyssi):
 - Reduced range for FFs measurements: $5.4 < s < 10.0 [GeV/c]^2$
 - Relative error scales as $\sqrt{10}$

Thanks for listening!

The ratio $R = |G_E|/|G_M|$, $|G_E|$, and $|G_M|$ can be extracted by fitting the $\cos^2 \theta$ distribution by the following fit function:

$$y = \mathbf{a} + \mathbf{b}\cos^{2}\theta, \text{ with } \mathbf{a} \equiv \sigma_{0}, \ \mathbf{b} \equiv \sigma_{0}\mathcal{A}$$
$$\sigma_{0} = \frac{\pi\alpha^{2}}{2\beta s} \left(|G_{M}|^{2} + \frac{1}{\tau}|G_{E}|^{2} \right),$$
$$\mathcal{A} = \frac{\tau |G_{M}|^{2} - |G_{E}|^{2}}{\tau |G_{M}|^{2} + |G_{E}|^{2}} = \frac{\tau - R^{2}}{\tau + R^{2}},$$
$$R = \sqrt{\tau \frac{1-\mathcal{A}}{1+\mathcal{A}}}, \ \Delta R = \frac{1}{R} \frac{\tau}{(1+\mathcal{A})^{2}} \Delta \mathcal{A}.$$

Method II – Extraction of FFs

The ratio $R = |G_E|/|G_M|$, $|G_E|$, and $|G_M|$ can be extracted by fitting the cos² θ distribution by the following fit function:

$$y = \mathbf{a} + \mathbf{b}\cos^2\theta, \text{ with } \mathbf{a} \equiv \sigma_0, \ \mathbf{b} \equiv \sigma_0 \mathcal{A}$$

$$\sigma_0 = \frac{\pi\alpha^2}{2\beta s} \left(|G_M|^2 + \frac{1}{\tau}|G_E|^2 \right),$$

$$\mathcal{A} = \frac{\tau |G_M|^2 - |G_E|^2}{\tau |G_M|^2 + |G_E|^2} = \frac{\tau - R^2}{\tau + R^2},$$

$$|G_M|^2 = \frac{(\mathbf{a} + \mathbf{b})}{2\mathcal{N}}, \ |G_E|^2 = \tau \frac{(\mathbf{a} - \mathbf{b})}{2\mathcal{N}}, \ \mathcal{N} = \frac{\Pi\alpha^2}{2\beta s} \mathcal{L},$$

$$G_M|^2 = \frac{1}{2\mathcal{N}} \sqrt{(\Delta a)^2 + (\Delta b)^2}, \ \Delta |G_E|^2 = \frac{\tau}{2\mathcal{N}} \sqrt{(\Delta a)^2 + (\Delta b)^2}.$$

Simulations

Software used for the simulations:

- PandaRoot version revision 25544
- FairSoft version apr13
- Geant4 for particle propagation

The following macros were used in the present work. The only difference was in sim_complete.C where different event generators were used:

- sim_complete.C
- digi_complete.C
- reco_complete.C
- pid_complete.C