Feasibility study: proton time-like electromagnetic form factors with the $\overline{\text { PANDA }}$ experiment

A. Dbeyssi ${ }^{1}$, D. Khaneft ${ }^{1}$, M. Zambrana ${ }^{1}$, M.C. Mora Espí ${ }^{1}$, Y. Wang ${ }^{3}$, F. Maas ${ }^{1}$,
D. Marchand ${ }^{2}$, E. Tomasi-Gustafsson ${ }^{3}$
${ }^{1}$ Helmholtz-Institut Mainz, Mainz, Germany
${ }^{2}$ Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay cedex, France
${ }^{3}$ IRFU, SPHN, CEA, Saclay, France

PANDA Collaboration Meeting 3-12-2015

HELMHOLTZ
 | GEMEINSCHAFT

Helmholtz-Institut Mainz

Electromagnetic form factors parameterize hadronic current space-like $q^{2} \rightarrow$ time-like s^{2}

How much do we know about FFs?

Published experimental data on $\mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|$, more data under analysis from BESIII and SND/Novosibirsk

How PANDA can contribute?

Kinematical reach of the PANDA experiment: 5.1-30.0 $[\mathrm{GeV} / \mathrm{c}]^{2}$ $\sigma\left(\bar{p} p \rightarrow e^{+} e^{-}\right) \sim 1 / s^{2}, R=\left|G_{E}\right| /\left|G_{M}\right|$

How to measure FFs?

Ingredients: $\frac{d \sigma}{d \cos \theta}=\operatorname{const}(s)\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{\left|G_{E}\right|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right]$

- Angular distribution of $\bar{p} p \rightarrow e^{+} e^{-}: \mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|$
- $\bar{p} p \rightarrow e^{+} e^{-}$differential cross section, need luminosity: $\left|G_{E}\right|$ and $\left|G_{M}\right|$

How to measure FFs - Method II

Another option? We can fit $\cos ^{2} \theta$ distribution.
Advantage - linear fit.

$$
y=a+b \cos ^{2} \theta, \text { with } a \equiv \sigma_{0}, b \equiv \sigma_{0} \mathcal{A}
$$

$$
\begin{aligned}
\sigma_{0} & =\frac{\pi \alpha^{2}}{2 \beta s}\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
\mathcal{A} & =\frac{\tau\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}}{\tau\left|G_{M}\right|^{2}+\left|G_{E}\right|^{2}}=\frac{\tau-\mathrm{R}^{2}}{\tau+\mathrm{R}^{2}}
\end{aligned}
$$

Background $-\bar{p} p \rightarrow \pi^{+} \pi^{-}$

Background, including three-body final states, kinematically very different.
Background of two heavy charged particles ($k^{+} k^{-}$, etc) in the final state:

- Kinematically very different from signal
- Detector response very different from signal
- Cross section is high

The most challenging background is $\bar{p} p \rightarrow \pi^{+} \pi^{-}$due to:

- Kinematically very similar to signal
- Detector response very similar to signal
- Cross section is by a factor of 10^{6} higher

Background event generator

low energy	transition region	high energy
data: - Eisenhandler et. al., NP B96 (1975)	6	9 data: - A. Eide et. al., NP B60 (1973) - T. Buran et. al., NPB $116(1976)$ - C. White et. al., PRD 49 (1994) model:
model: Legendre polynomial fit	interpolation	- Regge Theory J. Van de Wiele and S. Ong, EPJA 46 (2010)

Event generator was developed in Mainz by M. Zambrana.

Cross section and expected number of events

	signal		background	
$\bar{p} p \rightarrow e^{+} e^{-}$			$\bar{p} p \rightarrow \pi^{+} \pi^{-}$	
$\mathrm{s}[\mathrm{GeV} / \mathrm{c}]^{2}$	$\sigma[\mathrm{pb}]$	N	$\sigma[\mu \mathrm{b}]$	N
5.4	417.39	834800	101.06	$202.12 \cdot 10^{9}$
7.3	55.6	111100	13.09	$26.18 \cdot 10^{9}$
8.2	24.61	49210	2.95	$5.9 \cdot 10^{9}$
11.1	3.2	6503	0.56	$1.12 \cdot 10^{9}$
12.9	1.2	2328	0.23	$4.6 \cdot 10^{8}$
13.9	0.73	1466	0.16	$3.18 \cdot 10^{8}$

Integrated luminosity: $\mathcal{L}=2 f b^{-1}$

$$
\left|\cos \theta_{c m}\right|<0.8
$$

Two Methods

Two Methods

Method I

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $\left|G_{E}\right| /\left|G_{M}\right|=1$
- $s[\mathrm{GeV} / \mathrm{c}]^{2}: 5.4,7.3,8.2,11.1,12.9,13.9$
*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Method I

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $\left|G_{E}\right| /\left|G_{M}\right|=1$
- $\mathrm{s}[\mathrm{GeV} / \mathrm{c}]^{2}: 5.4,7.3,8.2,11.1,12.9,13.9$

Method II
Signal:

- Flat angular distribution (phase space) + PHOTOS
- Scaled to the expected statistics
- $s[\mathrm{GeV} / \mathrm{c}]^{2}: 5.4,8.2,13.9$
*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Method I

Method II

Signal:

- Zichichi cross section* + PHOTOS
- Assuming $\left|G_{E}\right| /\left|G_{M}\right|=1$
- $\mathrm{s}[\mathrm{GeV} / \mathrm{c}]^{2}: 5.4,7.3,8.2,11.1,12.9,13.9$

Signal:

- Flat angular distribution (phase space) + PHOTOS
- Scaled to the expected statistics
- $s[\mathrm{GeV} / \mathrm{c}]^{2}: 5.4,8.2,13.9$

Common features:

- Additional samples for signal efficiency determination, $\sim 10^{6}$ events at each energy
- Background:
M. Zambrana's event generator at $s=5.4,8.2$, and $13.9[\mathrm{GeV} / \mathrm{c}]^{2}$ 10^{8} events at each energy
*A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

Event selection criteria

Event selection criteria

Particle identification:

- PID_{c} [\%] - combined probability
- PID_{s} [\%] - individual detector probability
- $d E / d x_{S T T}$ [a.u.] - energy deposited in the central tracker
- $E_{E M C} / p[\mathrm{GeV} /(\mathrm{GeV} / \mathrm{c})]$ - ratio of deposited energy in the EMC over reconstructed momentum
- EMC LM [a.u.] - lateral momentum
- EMC E1 [GeV] - energy deposited in the cluster's central crystal

Event selection criteria

Particle identification:

- PID_{c} [\%] - combined probability
- PID_{s} [\%] - individual detector probability
- $d E / d x_{S T T}$ [a.u.] - energy deposited in the central tracker
- $E_{E M C} / p[\mathrm{GeV} /(\mathrm{GeV} / \mathrm{c})]$ - ratio of deposited energy in the EMC over reconstructed momentum
- EMC LM [a.u.] - lateral momentum
- EMC E1 [GeV] - energy deposited in the cluster's central crystal

Kinematical cuts:

- $\theta+\theta^{\prime}$ [degree] - sum of polar angles in the $\bar{p} p$ center of mass frame
- $\left|\phi-\phi^{\prime}\right|$ [degree] - difference of azimuthal angles in the $\bar{p} p$ center of mass frame
- $M_{i n v}[\mathrm{GeV} / \mathrm{c}]^{2}$ - invariant mass

Method I - Signal event selection

Step 0:
One positive and one negative track

Method I - Signal event selection

Step 1:
Cut values used for analysis

s	$[\mathrm{GeV} / \mathrm{c}]^{2}$	5.4	7.3	8.2	11.1	12.9	13.9
PID_{c}	$[\%]$	>99	>99	>99	>99	>99	>99
PID_{s}	$[\%]$	>10	>10	>10	>10	>10	>10
$d E / d x_{s T T}$	$[\mathrm{a} . \mathrm{u}]$.	>5.8	>5.8	>5.8	>5.8	>5.8	>6.5
$E_{E M C} / p$	$[\mathrm{GeV} /(\mathrm{GeV} / \mathrm{c})]$	>0.8	>0.8	>0.8	>0.8	>0.8	>0.8
EMC LM	$[\mathrm{a} . \mathrm{u}]$.	<0.75	<0.75	<0.75	<0.75	-	-
EMC E1	$[\mathrm{GeV}]$	>0.35	>0.35	>0.35	>0.35	>0.35	>0.35
$\theta+\theta^{\prime}$	$[$ degree $]$		$175<\theta+\theta^{\prime}<185$				
$\left\|\phi-\phi^{\prime}\right\|$	$[$ degree $]$		$175<\left\|\phi-\phi^{\prime}\right\|<185$				
$M_{\text {inv }}$	$[\mathrm{GeV} / \mathrm{c}]^{2}$	-	-	>2.2	>2.2	>2.2	>2.7

Method I - Reconstruction efficiency

Monte Carlo - red Selected - blue Efficiency - green

Method I - Efficiency

	signal	background
$s[\mathrm{GeV} / \mathrm{c}]^{2}$	$e^{+} e^{-}$	$\pi^{+} \pi^{-}$
5.4	50.9%	$6.8 \cdot 10^{-6} \%$
7.3	53.5%	-
8.2	46.3%	$2.0 \cdot 10^{-6} \%$
11.1	46.2%	-
12.9	46.6%	-
13.9	38.7%	$2.9 \cdot 10^{-6} \%$

Angular range $|\cos \theta| \leq 0.8$

Good signal efficiency, background suppression factor of 10^{-8}

Method I - Extraction of FFs

Method I - Extraction of FFs

- Angular distribution of events $\rightarrow R=\left|G_{E}\right| /\left|G_{M}\right|$

Fit function:
\#events $=\mathcal{L} \times \frac{d \sigma}{d \cos \theta}=C_{1}\left[\left(1+\cos ^{2} \theta\right)+\frac{|R|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right]$

Method I - Extraction of FFs

- Angular distribution of events $\rightarrow R=\left|G_{E}\right| /\left|G_{M}\right|$

Fit function:
$\#$ events $=\mathcal{L} \times \frac{d \sigma}{d \cos \theta}=C_{1}\left[\left(1+\cos ^{2} \theta\right)+\frac{|R|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right]$

- Luminosity \rightarrow cross section $\rightarrow\left|G_{E}\right|$ and $\left|G_{M}\right|$

Fit function:
$\frac{d \sigma}{d \cos \theta}=C\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{\left|G_{E}\right|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right]$
$\Delta \mathcal{L} / \mathcal{L}=3 \%$ assumed for cross section calculation

Method I - Events and cross section

Signal events (left) and cross section (right)

Method I - Results for $\mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|$

Method I - Results for $\mid G_{E}$ and $/\left|G_{M}\right|$

Expected statistical uncertainties on $\left|G_{E}\right|$ and $\left|G_{M}\right|$ with $\Delta \mathcal{L} / \mathcal{L}=3 \%$

$\mathrm{s}[\mathrm{GeV} / \mathrm{c}]^{2}$	$\left\|G_{E}\right\| \pm \Delta\left\|G_{E}\right\|$	$\left\|G_{M}\right\| \pm \Delta\left\|G_{M}\right\|$
5.4	$0.122 \pm 0.004[3.3 \%]$	$0.121 \pm 0.002[1.7 \%]$
7.3	$0.062 \pm 0.003[4.8 \%]$	$0.058 \pm 0.001[1.7 \%]$
8.2	$0.044 \pm 0.003[6.8 \%]$	$0.044 \pm 0.001[2.3 \%]$
11.1	$0.019 \pm 0.003[15.8 \%]$	$0.020 \pm 0.001[5.0 \%]$
12.9	$0.015 \pm 0.003[20.0 \%]$	$0.012 \pm 0.001[8.3 \%]$
13.8	$0.011 \pm 0.005[45.4 \%]$	$0.011 \pm 0.001[9.0 \%]$

Method II - Signal event selection

Step 0:
One negative and one positive track with $\theta+\theta^{\prime}$ closest to 180°
Step 1:
Cut values used for analysis

s	$[\mathrm{GeV} / \mathrm{c}]^{2}$	5.4	8.2	13.9
PID_{c}	$[\%]$	>99	>99	>99.5
PID_{s}	$[\%]$	>10	>10	>10
$d E / d x_{S T T}$	$[\mathrm{a.u}]$.	>6.5	>5.8	0 or >6.5
$E_{E M C} / p$	$[\mathrm{GeV} / \mathrm{GeV} / \mathrm{c}]$	>0.8	>0.8	>0.8
EMC LM	$[\mathrm{a.a}]$.	<0.66	<0.75	<0.66
EMC E1	$[\mathrm{GeV}]$	>0.35	>0.35	>0.35
$\theta+\theta^{\prime}$	$[$ degree $]$	$175<\theta+\theta^{\prime}<185$		
$\left\|\phi-\phi^{\prime}\right\|$	$[$ degree $]$	$175<\left\|\phi-\phi^{\prime}\right\|<185$		
$M_{\text {inv }}$	$[\mathrm{GeV} / \mathrm{c}]^{2}$	-	>2.2	

Differences in cuts with Method I are highlighted in blue

Method II - Reconstruction efficiency

Monte Carlo - green and blue Selected events - black and red

Method II - Efficiency

	signal	background
$s[\mathrm{GeV} / \mathrm{c}]^{2}$	$e^{+} e^{-}$	$\pi^{+} \pi^{-}$
5.4	41%	$1.9 \cdot 10^{-6 \%}$
8.2	44.6%	$9.8 \cdot 10^{-7 \%}$
13.9	40.8%	$1.9 \cdot 10^{-6} \%$
Angular range $\|\cos \theta\| \leq 0.8$		

Good signal efficiency, background suppression factor of 10^{-8}

Method II - Extraction of FFs

The ratio $R=\left|G_{E}\right| /\left|G_{M}\right|,\left|G_{E}\right|$, and $\left|G_{M}\right|$ can be extracted from $\cos ^{2} \theta$ distribution using:

$$
\begin{gathered}
y=a+b \cos ^{2} \theta, \text { with } a \equiv \sigma_{0}, b \equiv \sigma_{0} \mathcal{A} \\
\sigma_{0}=\frac{\pi \alpha^{2}}{2 \beta s}\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
\mathcal{A}=\frac{\tau\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}}{\tau\left|G_{M}\right|^{2}+\left|G_{E}\right|^{2}}=\frac{\tau-\mathrm{R}^{2}}{\tau+\mathrm{R}^{2}}
\end{gathered}
$$

Similar to the Method I:

- Angular distribution of events $\rightarrow R=\left|G_{E}\right| /\left|G_{M}\right|$
- Luminosity \rightarrow cross section $\rightarrow\left|G_{E}\right|$ and $\left|G_{M}\right|$

Method II - Events

Selected events - blue and orange Corrected events - green and red Fit - black

Method II - Results

The simulation input and expected statistical errors on $\mathrm{R}=\left|G_{E}\right| /\left|G_{M}\right|,\left|G_{E}\right|$, and $\left|G_{M}\right|$.

	input	input			
$s[\mathrm{GeV} / \mathrm{c}]^{2}$	R	$\Delta \mathrm{R}$	$\left\|G_{E, M}\right\|$	$\Delta\left\|G_{M}\right\|$	$\Delta\left\|G_{E}\right\|$
5.4	1	$0.014[1.4 \%]$	0.1215	$0.002[1.6 \%]$	$0.002[1.6 \%]$
8.2	1	$0.050[5.0 \%]$	0.0435	$0.001[2.3 \%]$	$0.002[2.3 \%]$
13.9	1	$0.407[40.7 \%]$	0.0110	$0.001[9.1 \%]$	$0.004[9.1 \%]$

Method II - Results

Two methods - Results

Method I and Method II are equivalent

Summary

Two independent feasibility studies were performed:

- Good signal efficiency of 39-54\%
- Background rejection factor of $\sim 10^{8}$
- Extraction of $R=\left|G_{E}\right| /\left|G_{M}\right|$ is possible for $5.4<s<12.9[\mathrm{GeV} / \mathrm{c}]^{2}$ - precision 1.5-56\%
- With precise luminosity measurements extraction of $\left|G_{E}\right|$ and $\left|G_{M}\right|$ will be possible for $5.4<s<12.9[\mathrm{GeV} / \mathrm{c}]^{2}$
- precision for $\left|G_{E}\right| 3.3-45.4 \%$
- precision for $\left|G_{M}\right| 1.7-9.0 \%$
- We studied reduced luminosity case (See talk by A. Dbeyssi):
- Reduced range for FFs measurements: $5.4<s<10.0[\mathrm{GeV} / \mathrm{c}]^{2}$
- Relative error scales as $\sqrt{10}$

Summary

Two independent feasibility studies were performed:

- Good signal efficiency of $39-54 \%$
- Background rejection factor of $\sim 10^{8}$
- Extraction of $R=\left|G_{E}\right| /\left|G_{M}\right|$ is possible for $5.4<s<12.9[\mathrm{GeV} / \mathrm{c}]^{2}$
- precision 1.5-56\%
- With precise luminosity measurements extraction of $\left|G_{E}\right|$ and $\left|G_{M}\right|$ will be possible for $5.4<s<12.9[\mathrm{GeV} / \mathrm{c}]^{2}$
- precision for $\left|G_{E}\right| 3.3-45.4 \%$
- precision for $\left|G_{M}\right|$ 1.7-9.0\%
- We studied reduced luminosity case (See talk by A. Dbeyssi):
- Reduced range for FFs measurements: $5.4<s<10.0[\mathrm{GeV} / \mathrm{c}]^{2}$
- Relative error scales as $\sqrt{10}$

Thanks for listening!

Method II - Extraction of FFs

The ratio $R=\left|G_{E}\right| /\left|G_{M}\right|,\left|G_{E}\right|$, and $\left|G_{M}\right|$ can be extracted by fitting the $\cos ^{2} \theta$ distribution by the following fit function:

$$
\begin{gathered}
y=a+b \cos ^{2} \theta, \text { with } a \equiv \sigma_{0}, b \equiv \sigma_{0} \mathcal{A} \\
\sigma_{0}=\frac{\pi \alpha^{2}}{2 \beta s}\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
\mathcal{A}=\frac{\tau\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}}{\tau\left|G_{M}\right|^{2}+\left|G_{E}\right|^{2}}=\frac{\tau-\mathrm{R}^{2}}{\tau+\mathrm{R}^{2}} \\
\mathrm{R}=\sqrt{\tau \frac{1-\mathcal{A}}{1+\mathcal{A}}}, \Delta \mathrm{R}=\frac{1}{\mathrm{R}} \frac{\tau}{(1+\mathcal{A})^{2}} \Delta \mathcal{A}
\end{gathered}
$$

Method II - Extraction of FFs

The ratio $R=\left|G_{E}\right| /\left|G_{M}\right|,\left|G_{E}\right|$, and $\left|G_{M}\right|$ can be extracted by fitting the $\cos ^{2} \theta$ distribution by the following fit function:

$$
\begin{gathered}
y=a+b \cos ^{2} \theta, \text { with } a \equiv \sigma_{0}, b \equiv \sigma_{0} \mathcal{A} \\
\sigma_{0}=\frac{\pi \alpha^{2}}{2 \beta s}\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
\mathcal{A}=\frac{\tau\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}}{\tau\left|G_{M}\right|^{2}+\left|G_{E}\right|^{2}}=\frac{\tau-\mathrm{R}^{2}}{\tau+\mathrm{R}^{2}} \\
\left|G_{M}\right|^{2}=\frac{(a+b)}{2 \mathcal{N}},\left|G_{E}\right|^{2}=\tau \frac{(a-b)}{2 \mathcal{N}}, \mathcal{N}=\frac{\Pi \alpha^{2}}{2 \beta s} \mathcal{L} \\
\Delta\left|G_{M}\right|^{2}=\frac{1}{2 \mathcal{N}} \sqrt{(\Delta a)^{2}+(\Delta b)^{2}}, \Delta\left|G_{E}\right|^{2}=\frac{\tau}{2 \mathcal{N}} \sqrt{(\Delta a)^{2}+(\Delta b)^{2}}
\end{gathered}
$$

Simulations

Software used for the simulations:

- PandaRoot version revision 25544
- FairSoft version apr13
- Geant4 for particle propagation

The following macros were used in the present work. The only difference was in sim_complete. C where different event generators were used:

- sim_complete.C
- digi_complete.C
- reco_complete.C
- pid_complete.C

