SciTil/BarreITOF Status Overview

Ken Suzuki, Stefan-Meyer-Institut, ÖAW 03.12.2015 PANDA LV. Collaboration Meeting, Vienna

Barrel-TOF Detector in TS a.k.a. SciTil

Proposal for a Scintillator Tile Hodoscope for $\overline{\mathsf{P}}\mathsf{ANDA}$

Version 1.1

K. Goetzen, H. Orth, G. Schepers, L. Schmitt, C. Schwarz, A. Wilms

Abstract

In this document a new detector in place of the barrel time-of-flight detector is proposed. This detector is based on small scintillator tiles read out by silicon photomultipliers. The motivation in terms of physics and technical benefits are summarized. Details of the detector layout are given.

K. Goetzen et al., Proposal for a scintillator barrel hodoscope for PANDA

SciTil Boundary Conditions

- Timing counter (σ_t <100ps) hodoscope
- Mechanics shared with DIRC
 - To fit to the limited space (<2 cm in radial direction)
- Scintillator + SiPM
 - Simple and robust
 - Fast readout

- SiPM SiPM
- Online tracking, t0, EMC Preshower detection, Relative TOF, PID, ...

SciTil Group

- Erlangen
- GSI
- Mainz
- Stefan-Meyer-Institut, Vienna
- India (Gauhati-U. Assam, Visva Bharati-U. Bolpur, BARC Mumbai)

Status

Milestone desired time resolution reached

Parameters to optimise Optical Coupling / Photosensor / Operation conditions / Position of the sensor / Number of sensors / Scintillator material / Geometry / Wrapping / Waveform analysis

Ketek time resolution

Time resolution dependent on SiPM type, scintillator and over-voltage. <u>Time resolution of about 85 ps reached with PM3360TS!</u>

SciTil Workshop - Vienna, July 24, 2014

Further optimisation of Single-Tile Performance

- You may say, it is well below or marginally below the goal?
 - real PANDA environment and high rate?
 - quality variation of sensor and assembly?
 - ageing, radiation?
- high spec. hardly an overkill
- Two key ideas
 - SciRod (Erlangen, Cracow, MEG2@PSI)
 - SiPM serial connection

SciRod (Erlangen)

more lightguide-like tile geometry Scintillator Samples

BC408 (τ = 2.1 ns)

- 5 x 5 x 170 mm³
- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 30 x 30 mm³

BC420 (τ = 1.5 ns)

- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 5 x 30 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 10 x 30 mm³

3

SciRod (Erlangen) cont'd

More Time Resolutions (1)

Scintillator 5 x 5 x 120 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88		94		101
	S10362-100P(x10)	71		77		74
	S12572-050P	72		77		74
BC420	S12572-015P	60		108		63
	S12572-050P	50	79	74	57	52

Scintillator 5 x 10 x 120 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	$\sigma_{_{t}}$	σ_{t}
BC408	S10362-100P	88	116	132	98	93
BC420	S10362-100P	75		121		82

BC420 scintillator provides better results than BC408

Albert Lehmann

SciRod (Erlangen) cont'd

More Time Resolutions (2)

Scintillator 5 x 5 x 50 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	68		103		74
	S12572-050P	74		67		68
BC420	S12572-050P	78		64		51

Scintillator $5 \times 10 \times 50 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	113		123		92

Scintillator 5 x 5 x 170 mm³

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88	85	129	85	99

Longer and wider rods tend to give worse time resolution

SciRod Summary

- Various geometry tested. Convincingly better.
- Gives better results primarily due to better light collection.
- Time resolution 50-100 ps.
- shorter, narrower geometry preferred.
- position resolution along rod. 13mm, actually better.

Serial connection of SiPM

Relatively new technique to increase effectively the sensitive area of SiPM (typically 3x3mm²)

Laser test

Picosecond laser (30 ps width) on Ketek PM3350 (1 - 4 in series) amplified with Photonique preamp. Plot shows an average of 1000 recorded waveforms.

more sensors, less capacity

13

with a side effect of making the signal response faster

Configuration

- Pros
 - less number of readout channel (1/3)
 - (much) better time resolution (~60 ps, instead of 100 ps), less position dependent
 - simpler construction
 - less material
 - better position resolution from "Left–Right" (σ ~10mm)
- Cons
 - slight increase of the number of sensors (4/3)
 - higher pile up probability

AUSTRIAN

CADEMY OF SCIENCES

pile up from different collisions

Handling of secondaries in simulation still to be checked 16

Status/Software

Use case

- EMC preshower detection/correction
- Relative TOF
- Online tracking (t0, pattern recognition,)
- Physics simulations

Preshower in DIRC

• In Panda, we have a SciTil in between DIRC and EMC, which has low material budget, insensitive to gamma, but has a high efficiency to charged particles. In a study for BaBar experiment, it was shown that, by detecting preshower by DIRC itself, 50% of the converted gamma can be recovered. But in our case, separate detector would discover conversion with full efficiency and enhance the energy resolution.

K. Dutta

Updated simulation result using the PANDARoot

normalised by the area

• In our study, it is observed that the energy spectrum of non preshower events is more or less of the Gaussian type. The Preshower events contributes a low end tail part to the distribution. But the effect of the preshower is not as prominent as found in the previous study.

Quantitative comparison w/, w/o DIRC material

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-x)}{2\sigma^2}), & \text{for } \frac{x-x}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$
$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right) \qquad B = \frac{n}{|\alpha|} - |\alpha|$$

K. Dutta

01-12-2015

PANDA LV. Collaboration Meeting, Wein.

Much smaller influence than previously told

Radiation Hardness

SiPM radiation studies – literature

Y. Musienko et al. 2009 [12]

82 MeV protons at PSI

Up to 1×10^{10} protons/cm² -> ~ equivalent to 2×10^{10} 1 MeV neutrons/cm² SiPMs (1x1 mm²) from CPTA/Photonique, MePhI/Pulsar, FBK-IRST, Zecotek, Hamamatsu SiPM parameters were measured before and 90 days after irradiation <u>Results:</u> – significant increase in leakage current and dark count rate for all devices

- no change of breakdown voltage and quenching resistor
- relative change of PDE < 10%
- significant reduction (> 10%) of signal amplitude for some devices

P. Bohn et al. 2009 [13]

212 MeV protons at Massachusetts General Hospital Up to 3 x 10^{10} protons/cm² -> ~ equivalent to 2.4 x 10^{10} 1 MeV neutrons/cm² SiPMs (1 mm² to 6.2 mm²) from CPTA, FBK, Hamamatsu SiPM current was measured continuously during irradiation Other parameters were measured during pauses in between irradiation steps <u>Results:</u> – significant increase in leakage current and dark count rate for all devices – reduced gain under large bias currents after irradiation – significant reduction (4% – 49%) of signal amplitude – loss of photon counting capability at max fluence – SiPMs remained functional as photon counters

– annealing at room temp –> reduction of leakage current by factor 2 in 100 days

L. Gruber, Feb. 2015

SiPM radiation studies – literature

T. Matsumura et al. 2009 [14]

53.3 MeV protons at Research Center for Nuclear Physics, Osaka Up to 2.8 x 10⁸ protons/ $mm^2 \rightarrow \sim$ equivalent to 4.8 x 10⁸ 1 MeV neutrons/ mm^2 SiPMs (1x1 mm²) from Hamamatsu (MPPC S10362-11-050C) SiPM current was measured continuously during irradiation Other parameters were measured during pauses in between irradiation steps <u>Results:</u> – significant increase in leakage current

- loss of photon counting capability at highest fluences
- no significant change in the gain up to 9.1×10^7 1 MeV neutrons/mm²

Y. Musienko et al. 2007 [15]

28 MeV positrons at PSI Up to 8 x 10¹⁰ positrons/cm² -> ~ equivalent to 2.7 x 10⁹ 1 MeV neutrons/cm² SiPMs (1 mm² to 4.41 mm²) from CPTA, Dubna, Hamamatsu SiPM parameters measured before and 2 days after irradiation Results: - significant increase in leakage current and dark count rate for all devices - change of gain and PDE < 15%

SiPM radiation studies – literature

S. Sanchez Majos et al. 2009 [16]

14 MeV electrons at MAMI Up to 3.8 x 10¹⁰ electrons/**mm²** SiPMs Photonique <u>Results:</u> – significant increase in leakage current

- loss of photon counting capability
- partial recovery after annealing at 80°C

M. Danilov 2007 [17]

200 MeV protons at ITEP synchrotron

Up to 2 x 10^{12} protons/cm² -> ~ equivalent to 1.6 x 10^{10} 1 MeV neutrons/cm²

SiPMs 1.1 x 1.1 mm² from MEPhI/Pulsar

<u>Results:</u> – significant increase in leakage current

- loss of photon counting capability after 10¹⁰ protons/cm²
- SiPMs still operable after highest fluence but much more noise

Y. Musienko NDIP 2011 [18] A. H. Heering NDIP 2011 [19]

1 MeV neutrons at CERN IRRAD facility

Up to 3 x 10¹² neutrons/cm²

New SiPMs from Hamamatsu with different pixel sizes (15U – 50U)

<u>Results:</u> – SiPMs with high cell density and fast recovery time can operate up to 3 x 10¹² n/cm²

- gain change < 25%

L. Gruber, Feb. 2015

Radiation test at PSI

We plan to do a radiation hardness test of SiPMs at PSI in Villigen, Switzerland in the first half of 2015.

The Proton Irradiation Facility (PIF) there is well suited for such tests.

- Proton energy up to 230 MeV
- Max. intensity at 230 MeV: 2 nA
- Max. flux at 230 MeV: ~ 2 x 10⁹ p/s/cm²

http://pif.web.psi.ch/pif.htm

We know the facility from previous test beam experiments. We are in contact with the responsible person. A radiation hardness test in April 2015 seems feasible.

The idea is to test several SiPMs from different vendors and compare the performance before, during and after irradiation.

Irradiation time

Estimation: 10 years of SciTil in PANDA: ~ 1 x 10¹² MIPs/cm²

dE/dx vs. *E* of protons in silicon

PIF: hardness factor 230 MeV protons: 0.95 (tabulated value) PIF: max intensity: $2 \times 10^9 \text{ p/cm}^2/\text{s}$ Time needed to achieve roughly same damage as expected in PANDA: 325 s ~ 5.5 min

L. Gruber, Feb. 2015

Irradiation test, early 2016, also with the new Hamamatsu sensors

TDR

_	A	В	C			
1	System	Submission Expected	M3 (Approval) Expected			
2	Target Spectrometer EMC		08/08/2008			
3	Barrel EMC		08/08/2008			
4	Backward Endcap EMC		08/08/2008			
5	Forward Endcap EMC		08/08/2008			
6	Solenoid		05/21/2009			
7	Dipole		05/21/2009			
8	Micro Vertex Detector (MVD)		02/26/2013			
9	Straw Tube Tracker (STT)		01/29/2013			
10	Cluster Jet Target		08/28/2013			
11	Muon System		09/22/2014			
12	Forward Shashlyk Calorimeter	17/6/2015	1/2016			
13	Luminosity Detector	3/2016	9/2016			
14	Forward TOF	3/2015	9/2016			
15	Forward Tracking	3/2015	9/2016			
16	Barrel DIRC	6/2016	12/2016			
17	Hypernuclear Setup	6/2016	12/2016			
18	Pellet Target	6/2016	12/2016			
19	Controls	6/2016	12/2016			
20	Planar GEM Trackers	9/2016	3/2017			
21	Barrel Time of Flight (TOF)	9/2016	3/2017			
22	DAQ	6/2017	12/2017			
23	Endcap Disc DIRC	6/2017	12/2017			
24	Computing	9/2017	3/2018			
25	Silicon Lambda Disks	tba	tba			
26	Forward RICH	tba	tba			
27	tba: to be announced		Status 3/11/2015			
28	For the items "lateraction Pasies"	Cupporte" and "Cu	police" no TDDs are			
29	29 planned, only specification documents.					

ON SCHEDULE

Summary and Outlook

- minor geometry update
- (much) better time resolution
- make more use of SciTil in your simulations (high/low level)
- Irradiation test early next year
- On schedule

Backup

Development in Sensor

sensitive area size (0.1 mm) pixel size (µm) package \$13360-[13|30|60][25|50|75][CS/PE] \$12571

Status

- with Mainz group (C. Sfienti, M. Hoek)
- Working on concept
- Testing the TOF-PET chip
 - An evaluation kit of TOF-PET chip originally purchased by Carsten/Herbert
 - 64ch/chip
 - rate capability: $100 \text{ kHz} = 10 \text{ }\mu\text{s}$?

Evaluation kit

