Baryon Spectroscopy

Dec 2, 2015 | Albrecht Gillitzer, IKP Forschungszentrum Jülich PANDA LV Collaboration Meeting, Vienna, Nov 30 – Dec 4, 2015

Overview

Beamline

Solenoid

CTOF

SVT

Why to be Interested in Baryons?

- No understanding of strong interaction without understanding the excitation pattern of baryons!
- Strong worldwide activity in "Baryon Spectroscopy" with photo-induced reactions

Open Questions

- Missing resonances
- Wrong masses, wrong sequence
- Relevant degrees of freedom?
 - 3-quark or quark-diquark structure?
 - single particle excitation modes
 - meson-baryon dynamics

Excited Hyperon States?

U. Löring, B.Ch. Metsch, H.R. Petry, Eur. Phys. J A 10 (2001) 309, 395,447

SU(6) x O(3) Classification

PDG:

- octet Ξ states: no partner states of most known N^{*} states
- Ξ(1820) and Ξ(2030)
 "educated guess"
- decuplet Ξ and Ω states:
 no Δ^{*} partner state
- note on E resonances:
 "... nothing of significance on E resonances has been added since our 1988 edition."

PDG 2008

$J^{P_{-}}$	(D,L^P_N)	S	Octet n	nembers		Singlets
1/2+	(56,0^+)	1/2 N(939)	<i>А</i> (1116)	Σ(11 93)	Ξ(1318)	
$1/2^{+}$	$(56,0^+_2)$	1/2 N(1440)	A(1600)	$\Sigma(1660)$	Ξ(?)	
$1/2^{-}$	$(70,1_1^-)$	1/2 N(1535)	<i>A</i> (1670)	$\Sigma(1620)$	Ξ(?)	<i>A</i> (1405)
$3/2^{-}$	$(70,1_1^-)$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
$1/2^{-}$	$(70,1_1^-)$	3/2 N(1650)	A(1800)	$\Sigma(1750)$	Ξ(?)	
3/2-	$(70,1_{1}^{-})$	3/2 N(1700)	Λ(?)	$\Sigma(?)$	Ξ(?)	
$5/2^{-}$	$(70,1_1^-)$	3/2 N(1675)	A(1830)	$\Sigma(1775)$	Ξ(?)	
$1/2^{+}$	$(70,0^+_2)$	1/2 N(1710)	A(1810)	$\Sigma(1880)$	Ξ(?)	Λ(?)
$3/2^{+}$	$(56, 2^+_2)$	1/2 N(1720)	A(1890)	$\Sigma(?)$	Ξ(?)	
$5/2^{+}$	$(56, 2^+_2)$	1/2 N(1680)	A(1820)	$\Sigma(1915)$	$\Xi(2030)$	
7/2-	$(70, 3^3)$	1/2 N(2190)	Λ(?)	$\Sigma(?)$	Ξ(?)	<i>A</i> (2100)
9/2-	$(70,3^{-}_{3})$	3/2 N(2250)	Λ(?)	$\Sigma(?)$	Ξ(?)	
9/2+	$(56, 4_4^+)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	Ξ(?)	

Decuplet members

$3/2^{+}$	$(56,0^+_0)$	3/2 ∆(1232)	$\Sigma(1385)$	Ξ(1 53 0)	Ω(1672)
$3/2^{+}$	$(56,0^+_2)$	3/2 ∠(1600)	$\Sigma(?)$	三(?)	$\Omega(?)$
$1/2^{-}$	$(70,1_1^-)$	1/2 <i>\Delta</i> (1620)	$\Sigma(?)$	三(?)	$\Omega(?)$
$3/2^{-}$	$(70,1_1^-)$	1/2 <i>\Delta</i> (1700)	$\Sigma(?)$	Ξ(?)	$\Omega(?)$
$5/2^{+}$	$(56, 2^+_2)$	3/2 <i>\Delta</i> (1905)	$\Sigma(?)$	Ξ(?)	$\Omega(?)$
7/2+	$(56, 2^+_2)$	3/2 <i>\Delta</i> (1950)	$\Sigma(2030)$	Ξ(?)	$\Omega(?)$
11/2+	$(56, 4^+_4)$	3/2 ∆(2420)	$\Sigma(?)$	Ξ(?)	<i>Ω</i> (?)

Dec2, 2015

Data on Ξ States: $\Xi(1530)$

- The only reasonably well studied Ξ resonance:
- Ξ(1530) decuplet g.s. $J^{P} = 3/2^{+}$
- Compare to $\Delta !!$ Γ = 9...10 MeV

BaBar 2008

B. Aubert et al.,

Albrecht Gillitzer

- decay: ~100% Ξπ
- BaBar measured the $\Xi(1530)^0$ spin J = 3/2 in $\Lambda_{c}^{+} \rightarrow \Xi^{-} \pi^{+} K^{+}$

Why to Study Excited Baryons with PANDA?

- Large cross sections for $\overline{p} p \rightarrow \overline{B} B^*$
 - $\sigma(\overline{p}p \rightarrow \overline{\Xi}\Xi) \approx \mu b$
 - $\sigma(\overline{p}p \rightarrow \overline{\Omega}\Omega) \approx 0.03 \dots 0.1 \mu b$ (prediction)
- No extra mesons to balance strangeness or charm
- Symmetry in baryon and antibaryon observables
- Capabilities of the PANDA detector
- PANDA is particularly suited for double & triple strange baryon spectroscopy !!

Physics Subtopics in Baryon Spectroscopy at PANDA

Study excited states of

- double-strange hyperons (Ξ^*)
- triple-strange hyperons (Ω^*)
- charmed hyperons $(\Lambda_c^*, \Sigma_c^*)$
- hidden-charm nucleons $(N_{c\bar{c}})$
- non-strange baryons (N^*)
- single-strange hyperons (Λ^*, Σ^*)

high rates already at 1% of design lumi

Expected Rates

- initial phase: $L \cong 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ instead of $L \cong 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- nevertheless the $\Xi \overline{\Xi}$ production rate will be $R_{\Xi \overline{\Xi}} \cong 10/s \cong 10^6/d$
- for $\Omega\overline{\Omega}$ production we expect $R_{\Omega\overline{\Omega}} \cong 0.3/s \cong 3 \cdot 10^4/d$
- for excited states the cross section should be of the same order of magnitude as for the ground state for given $\sqrt{s} \sqrt{s_{thr}}$
- the *detected* rate depends on the specific decay mode (branching & reconstruction efficiency)
- e.g. $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-} \rightarrow \bar{\Xi}^+ \Xi^- \pi^0 \rightarrow \bar{\Lambda}\pi^+ \Lambda \pi^- \pi^0 \rightarrow \bar{p}\pi^+ \pi^+ p \pi^- \pi^- \pi^0$ assume $b = 0.5 \cdot 0.64^2 = 0.2$ and $\epsilon = 5\% \rightarrow R_{det} \cong 10^4/d$

PANDA Physics Book: $\Xi^* \rightarrow \Xi \pi$

- characteristic event topology
- $\sigma \sim \mu b$: ~10⁷ Ξ /d produced
- final states to be studied: $\Xi^* \rightarrow \Xi \pi, \Xi \eta, \Lambda \overline{K}, \Sigma \overline{K},$ $\Xi(1530) \pi, \Xi \pi \pi, ...$
- benchmark channel: 6.57 GeV/c $\overline{p} p \rightarrow \Xi^{-} \overline{\Xi}^{+} \pi^{0}$
- no empty regions or discontinuities in Dalitz plot
- Ξ⁻π⁰ mass resolution < 4 MeV; rec. eff. ~15%, S/B >19^{*}

^{*}DPM generated background

Recent Simulation & Analysis Activities

- New subgroup on "Hyperon Physics" joining efforts related to reaction dynamics and spectroscopy
- $\overline{\Xi}^+\Xi^-$ (g.s.) at p = 4.0 GeV/c Karin Schönning / A.G. (completed)
- $\overline{\Xi}^+\Xi(1690)^-$, $\Xi(1690)^- \rightarrow \Lambda K^-$ at p = 4.1 GeV/c André Zambanini, analysis completed, PhD thesis handed in
- Λ(1520) → Λe⁺e⁻ Dalitz decay in Λ^(*)Λ^{*} Jacek Biernat, on-going
- extension of vertex fitters and
- $\overline{\Xi}^+\Xi(1820)^-$, $\Xi(1820)^- \rightarrow \Lambda K^-$ & c.c. (started recently) Jennifer Pütz, PhD thesis devoted to Ξ^* spectroscopy

Investigated Channel

- Excited cascade: $\Xi^+\Xi^-(1690)$
 - Not much is known for $\Xi^{-}(1690)$
 - Threshold at 3012 MeV (J/Ψ: 3097 MeV)
 - Beam momentum: 4.1 GeV/c $(\sqrt{s} = 3106 \text{ MeV})$

<i>Ξ</i> (1690)	$I(J^P) = \frac{1}{2}(?^?)$				
Mass $m = 1690 \pm 10$ MeV ^[c] Full width $\Gamma < 30$ MeV					
E(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV			
E(1690) DECAY MODES	Fraction (Γ_i/Γ) seen	p (MeV)			
Ξ(1690) DECAY MODES Λ <u>K</u> Σ K	Fraction (Γ_i/Γ) seen seen	р (МеV) 2			
	Fraction (Γ _i /Γ) seen seen seen	p (MeV)			

http://pdg.lbl.gov/, summary tables, generated on 2015-02-24

Note: Ξ^{-*} in my case always $\Xi^{-}(1690)$.

Event Generator: EvtGen Beam Momentum: 4.1 GeV/c FairSoft/FairRoot: mar15 PandaRoot: trunk (r27694) Track Finding/PID: ideal

André Zambanini

$\overline{\Lambda}$ Invariant Mass

 \Rightarrow Good suppression of wrong combinations

André Zambanini

Reconstruction Summary

Particle	$N_{ m sig}$ ($\epsilon_{ m sig}$)	$N_{ m bkg}~(\epsilon_{ m bkg})$	S
Generated	499,750 (100%)	47,367,000 (100%)	
$\frac{\Lambda}{\Lambda}$	210,761 (42.2%)	270,433 (0.6 %)	199
	194,907 (39.0%)	317,156 (0.7 %)	145
Ξ [*]	107,893 (21.6%)	26 (5.5×10^{-7})	89,990
Ξ ⁺	41,875 (8.4%)	20 (4.2×10^{-7})	30,023
$\overline{\Xi}^+\Xi^{-*}$, only 4C cut	11,011 (2.2%)	3 (0.6×10^{-7})	8142
$\overline{\Xi}^+\Xi^{-*}$, $+\overline{\Xi}^+$ cuts	4012 (0.8%)	1 (0.2×10^{-7})	3034

- Reconstruction efficiency: 2.2 %
 - 6756 h⁻¹ fully reconstructed signals at $L = 2 \times 10^{32} / (\text{cm}^2 \text{ s})$
 - 338 h⁻¹ fully reconstructed signals at $L = 1 \times 10^{31}$ /(cm² s)
- Very good background suppression possibilities
 - Conservative cuts: 3879 background events after scaling
 - Same time frame: 11,011 exclusive signal events
 - More optimizations possible (with final detector implementation?)

$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi (1820)^-$ & c.c.

- p = 4.6 GeV/c
- Used ideal tracking and "best" particle id
- Selected only final state particles with $N_{\text{Hits}} \ge 4$ in any inner tracking detector (MVD, STT, GEM)

$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi (1820)^-$ & c.c. Reconstruction Efficiencies

Reco efficier	icy p̃p → Ξ* Ξ	Reco efficiency $\overline{p}p \rightarrow \Xi \overline{\Xi}^*$		
Particle	Reco eff. in %	particle	Reco eff. in %	
Λ^0	50.31	Λ^0	42.51	
$\overline{\Lambda}^{0}$	41.61	$\overline{\Lambda}^{0}$	49,03	
Ξ	18.39	Ξ	18.62	
Ξ(1820)	31.94	Ξ(1820)	33.11	
Ξ(1820) Ξ sys	4.67	ΞΞ(1820) sys	4.86	

Ongoing & Future Simulation & Analysis Activities

- $\Lambda(1520) \rightarrow \Lambda e^+e^-$ Dalitz decay in $\overline{\Lambda}^{(*)}\Lambda^*$, Jacek Biernat (Cracow)
- $\overline{\Xi}^+$ Ξ^+ Ξ^+

not covered:

- single strange hyperons (Λ,Σ)
- triple strange hyperons (Ω)
- charmed baryons (Λ_c, Σ_c)
- hidden charm baryons (N^{*}_{cc})

Conclusion

- baryon spectroscopy group in much better shape
- further work needed on:
 - realistic pattern reconstruction for displaced tracks
 - tracking & PID in Forward Spectrometer
 - vertex fitters (decay trees, ...) \rightarrow Ralf Kliemt (Computing Session)
 - PWA
- only part of the physics program covered in simulation and analysis
- further participation highly welcome