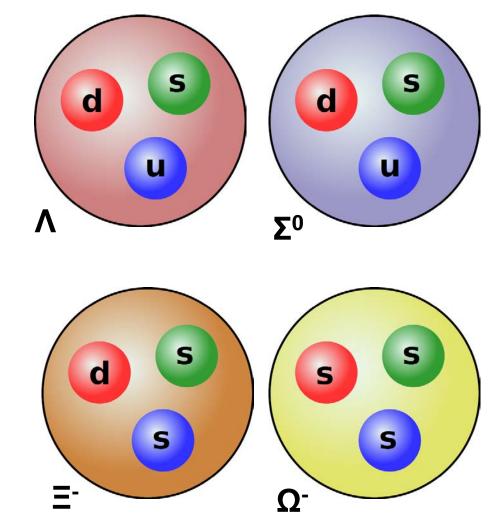
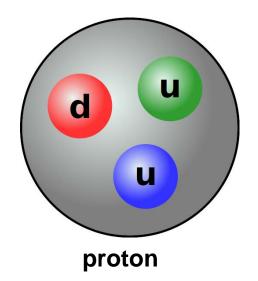


Spin Observables in Hyperon Production

Karin Schönning, Uppsala University, on behalf of the Hyperon Physics Working Group, PANDA

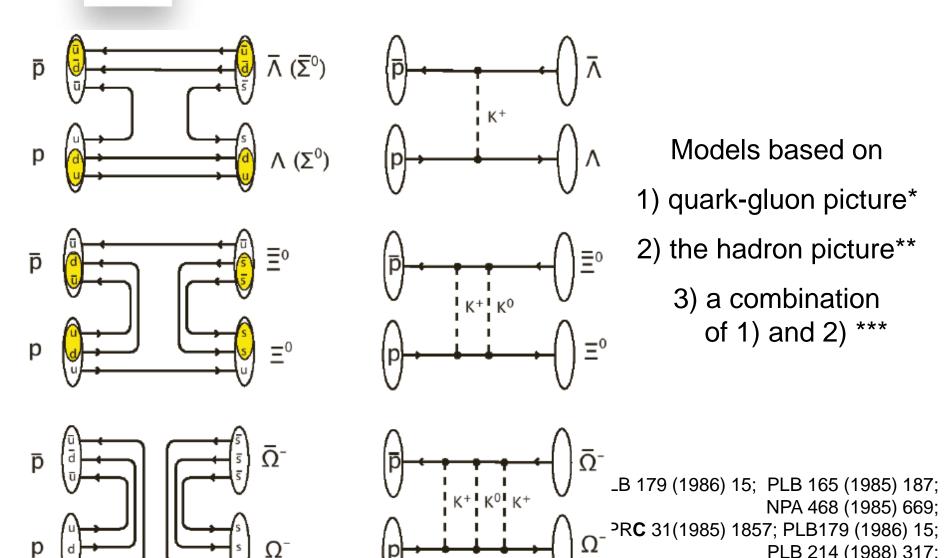
PANDA Collaboration Meeting, Dec. 2nd Vienna, Austria


Outline


- Introduction
- Prospects for PANDA
- Current status
- Challenges in hyperon analysis
- Future strategy

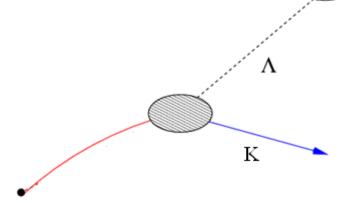
Key question in hyperon physics:

What happens if
we replace one of the
light quarks in the proton
with one - or many heavier quark(s)?


Introduction

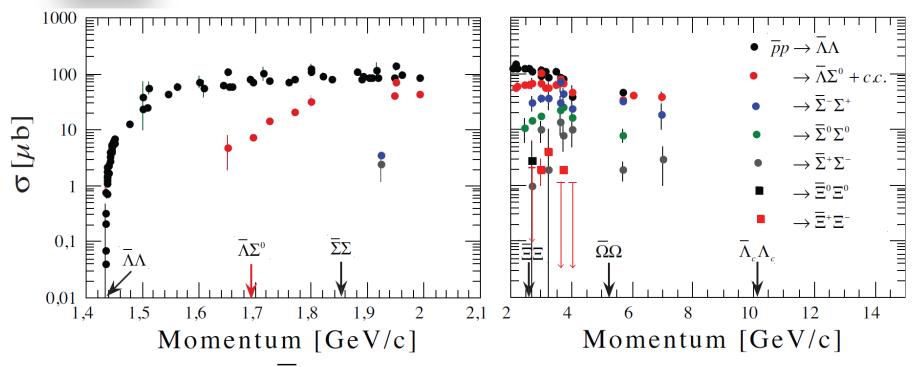
- Light quark (u, d) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - Scale: m_s ≈ 100 MeV ~ Λ_{QCD} ≈ 200 MeV.
 - Relevant degrees of freedom?
 - Probes QCD in the intermediate domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Strange and charm production


PLB 696 (2011) 352.

Spin observables in $\overline{p}p \rightarrow YY$

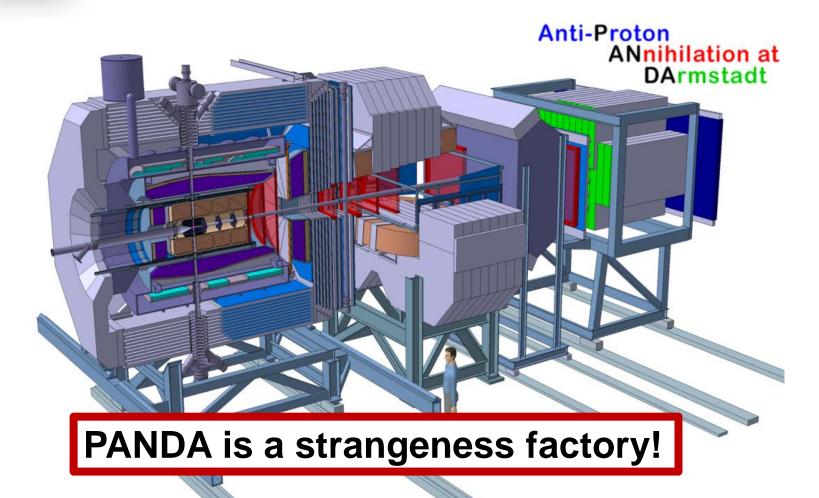
- Spin $\frac{1}{2}$ hyperons $(\Lambda, \Xi, \Lambda_c)$:
 - Polarisation.
 - Spin correlations.


π

- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters.

Spin observables are powerful tools in testing models.

Previous measurements of $\overline{p}p \to YY$



- A lot of data on $\overline{p}p \to \Lambda\Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \to \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$

^{*} See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

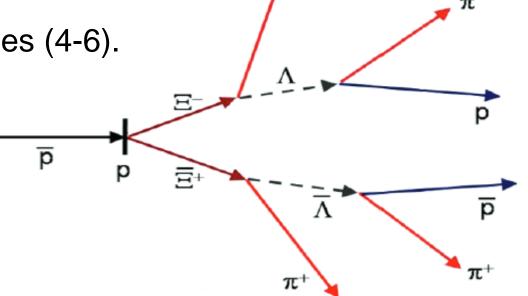
Prospects for PANDA

Prospects for PANDA

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	11	29 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^o$	~40	~30	50 s ⁻¹
4	$\overline{p}p o \overline{\Xi}^{\scriptscriptstyle +}\Xi^{\scriptscriptstyle -}$	~2	~20	1.5 s ⁻¹
12	$\overline{p}p o \overline{\Omega}^{\scriptscriptstyle +} \Omega^{\scriptscriptstyle -}$	~0.002	~30	~4 h ⁻¹
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	~35	~2 day ⁻¹

- Simulations using the old MC framework.
- Quoted rates are valid for day one luminosity of the HESR (10³¹ cm⁻² s⁻¹).

$$\overline{p}p \to \overline{\Lambda}\Lambda, \quad \overline{\Sigma}^{-}\Sigma^{+}, \quad \overline{\Sigma}^{0}\Sigma^{0}, \quad \overline{\Sigma}^{-}\Sigma^{+}, \quad \overline{\Xi}^{0}\Xi^{0}, \quad \overline{\Xi}^{+}\Xi^{-}, \quad \overline{\Omega}^{+}\Omega^{-}, \overline{\Lambda}_{c}^{-}\Lambda_{c}^{+}$$


$$p\pi^{-} \quad p\pi^{0} \quad \Lambda\gamma \quad n\pi \quad \Lambda\pi^{0} \quad \Lambda\pi \quad \Lambda K \quad \Lambda\pi$$

$$64\% \quad 52\% \approx 100\% \approx 100\% \approx 100\% \approx 100\% \quad 88\% \approx 1\%$$

Requirements for hyperon physics

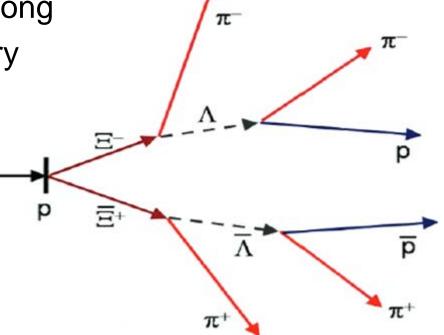
- Weak decay → displaced vertices
 - Good spacial resolution required
 - More difficult to handle in reconstruction.
 - Background can be reduced to a very low level.
- Many final state particles (4-6).

Current status

All released simulation studies of hyperon spin observables are performed with the old framework:

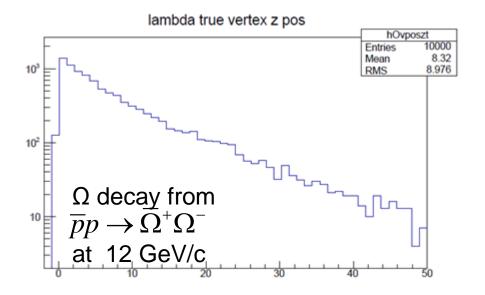
- Not all detector material implemented.
- Ideal pattern recognition.
- Unrealistically high efficiency for low momentum particles.

Simulations need to be validated with Pandaroot!

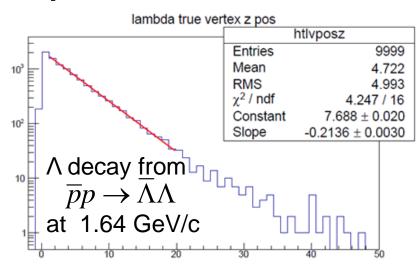


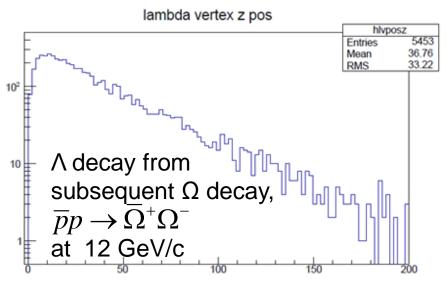
Challenges in hyperon analysis

- Weak decays: displaced vertices.
 - Multi-strange hyperons: two subsequent decays with displaced decay vertices.


 Single-strange hyperons: strong forward-backward asymmetry

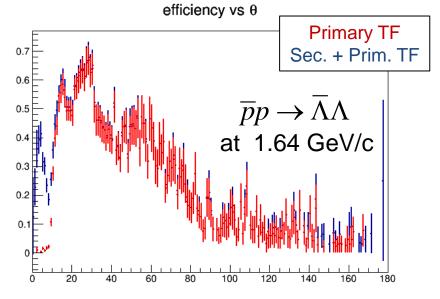
→ very slow pions.

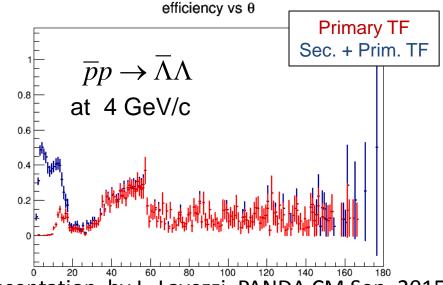




- Decay vertices between 1-100 cm.
- Multi-strange hyperons: several subsequent decays.

Displaced vertices


Displaced vertices


- Standard track finder for Target Spectrometer assumes track origin at IP
 - → not true for hyperons!
 - → efficiency ~ 7 times worse than with ideal pattern recognition (at 1.64 GeV/c)
- Forward Spectrometer: so far only ideal pattern recognition in Pandaroot trunk.

- 1) Secondary track finder by Lia Lavezzi.
 - Uses MVD, STT and GEMs
 - Status presented at the September CM.
 - Efficiency improved for low θ (more displaced vertices?).
 - Available in the Pandaroot trunk including test macros

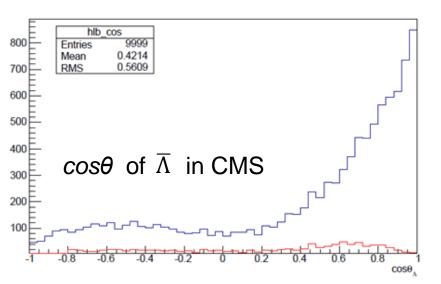
Further testing encouraged.

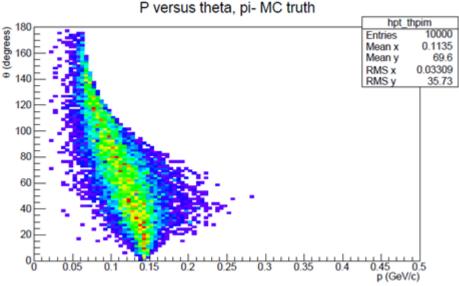
Presentation by L. Lavezzi, PANDA CM Sep. 2015

- 2) STTCellTrackFinder by Jette Schumann.
 - Only STT: About ~30% of $\overline{p}p \to \overline{\Omega}^+\Omega^-$ events have \geq 1 charged tracks with hits in STT only.
 - Single-strange hyperons produced at high momenta may give NO hits in MVD (~30%)
 - Possible candidate for online track reconstruction.
 - z-position by skewed straws (W. Ikegami-Andersson).
 - Yet to be fully integrated into the analysis chain.

- 3) Forward track finder by Martin Galuska.
 - still needs tuning and testing.
 - someone needs to take over the task since Martin is about to finish his Ph.D.

- 3) Forward track finder by Martin Galuska.
 - still needs tuning and testing.
 - someone needs to take over the task since Martin is about to finish his Ph.D.


Both 2) and 3) are under development and not standard Pandaroot!


Personpower needed!

Low p_T pions

- Experimental fact: single-strange Λ and Σ hyperons are produced with strong forward-backward asymmetry in CMS.
- This means that in the lab system, π^- from Λ decays have very small p (and p_T).

Low p_T pions

- Low p_T pions circle around inside the STT without leaving it \rightarrow difficult to reconstruct.
- Half solenoid field improves the efficiency but gives worse resolution.
- Genfit2 should improve the efficiency by a factor of 2 but needs to be tested on the hyperon channels.

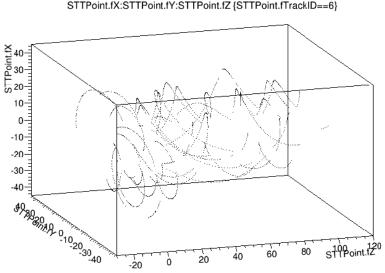


Figure from S. Spataro

Future strategy

The most urgent and time consuming task:

Track finders with realistic pattern recognition that handle displaced vertices

- 1) in the central part.
- 2) in the forward part.
- 3) in central AND forward part.

Both online and offline processing have to be considered.

A lot of work has been done but by primarily by people who have left / are leaving PANDA.

Future strategy

We have:

- existing track finders to develop further.
- a lot of time.

We need:

- senior people who plan to stay within PANDA for a long time (> 2 years) willing to take charge.
- people willing to put a lot of time (> 50%) into these tasks.

Summary

- Strangeness production probes the strong interaction in the confinement domain.
- Spin observables are powerful in testing models.
- PANDA is the perfect experiment for strangeness production.
- Old simulation studies need validation with Pandaroot.
- Hyperons have displaced vertices = big challenge!
 - Several secondary track finders under development.
 - Lack of personpower for tuning, testing, debugging and further development.

Thanks for your attention!