

Status of Computing

Stefano Spataro

Status of Computing

Computing extensively discussed in the last 12 months

December 2014

Status of Computing (myself) - 1h20'

March 2015

FAIR Computing activities (Thorsten Kollegger)

September 2015 – Extensive computing review – almost 3h

Stefano Spataro

- General Status of Computing

Radek Karabowic

Status of Core Developments

Gianluigi Boca

Review of Tracking Software

Paul Buehler

Review of Data Production Systems

Klaus Goetzen

Review of Analysis Tools

Mark Palizaeusz

Overview of Analysis activities

Tracking

- ✓ Pattern Recognition in Central Tracker Working since 2011
- ✓ Basic assumption: external t0
- ✓ STT Region well covered

Recent Activities

- ✓ Definition of standard QA for tracking
- ✓ Automatic QA in dashboard
- ✓ Secondary tracking algorithm, covering GEM region
- Genfit2 improves low momentum (fixed memory problems)
 - ✓ Needed Track Cleaning
 - ✓ CA Tracking developments ongoing (last months -> standby)
 - ✓ Pattern Recognition in Forward Tracker only Ideal since 2012
 - ✓ No progresses this year

Particle Identification

	Det.	PID Variables	Track Correlation	Algorithm	
ER	MVD	dE/dx	YES	Bayesian	
ΛEΤ	STT	dE/dx truncated mean	YES	Bayesian	
30V	GEM	-	-	-	
SPECTROMET	EMC	E/p, Shower Shape	YES	Bayesian, TMVA	
SPE	DIRC	Cherenkov angle (fast digi)	YES	Bayesian	
	DISC	Cherenkov angle (fast digi)	YES	Bayesian	
TARGET	SciTil	Time of Flight	YES	NO	
TAI	MDT	# layers, # hits, track χ^2 Good for T	. =0	Hard Cut	
Q	FTS	Bad for F	<u>S</u>	-	
FORWARD	FTOF	Time of Flight	YES FTOF NO DTOF	NO	
FOF	FSC	E/p, Shower Shape	YES	NO	
	RICH	_	NO	NO	

New (advanced) efforts for RICH, not yet in svn

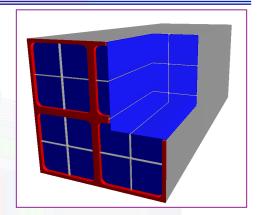
Available Mosty available Not available

What about EMC and neutrals?

Geometry

❖ Mostly just crystals – almost no passive structures

Digitization


Time based simulation recenty updated

Reconstruction

- Clustering, bump splitting, energy corrections, etc...
- Correlation to charged tracks
- Uncertainty in calibration, covariance matrices, stability, random maintenance
- ❖ Improve algorithms, split-off handling, covariance matrices
- ❖ Need to improve neutral reconstruction, noise suppression

Recent Activities

- MC Matching fixed
- Studies on Preshower in the DISC (by SciTil group)

What can I do with PandaRoot?

Charged channels analysis

- In the Target Spectrometer: everything!
 - Good tracking
 - Realistic PID (almost)
 - Secondaries: improved, but tests are needed
- ➤ In the Forward Spectrometer: well...
 - Only Ideal tracking
 - No PID algorithms, only PID variables

Channels with neutrals

- No passive elements, but full reco chain
- Uncertainty in the response (cov matrix? Calibration?)

Outcome from the SG

- We need more computing manpower from the institutes
- Low threshold for physics analysis (using virtualization)
- More efforts on the time-based simulations
- A Computing TDR
- A realistic funding plan and risk analysis
- Strong reliable code
- Centralized data production
- Analysts free from installing software

Time based simulation

	Det.	Time Stamp	Pile-Up simulated	Reco using time information				
FORWARD TARGET SPECTROMETER	MVD	Yes	Old digi kept – energy modified	MVD Riemann track finder				
	STT	Yes	Throw away new data	Two different track finders, not fully in PandaRoot				
	GEM	Yes	Old digi kept – energy modified	GEM track finder				
	SciTil	Yes	Yes	Ongoing				
	DIRC	Yes	Old digi kept	Yes				
	DISC	(Yes?)	??	(Yes?)				
	EMC	Yes	Modified waveforms	Bump builder				
	Muon	Yes	Modified waveforms ongoing	Ongoing				
	FTS	Yes	Throw away new data	No				
	FTOF	No						
	FSC	Yes	?	?				

In December 2014 a list of software tasks was provided to the CB

Neutral calorimetry

Characterization/improving of bump splitting algorithms, pi° reconstruction

Hadronic and em split-off recognition

PreShower detection and correction

Calibration of photon energy response

Parametrization of photon covariance matrix

Detection of charged signals in EMC using tracking information

Detection of charged signals in EMC using SciTil/GEM/MDT information

Criteria for good neutral candidate selections

Validation of hadronic signal in calorimeter with G3 and G4

Validation of electromagnetic signals in forward calorimeter with G3 and G4

Alignment algorithms

Automatic Quality Assurance

Tracking

Validation of Pattern Recognition codes

Secondary Vertex track reconstruction and fitting (Lia)

Low Pt tracking investigation for barrel

Low momentum tracking for Forward Tracker (inside the dipole)

Implementation/interface of new propagation tools different from Geane

Tracking in the GEM region (Lia)

Correlation between central and forward tracker

Algorithms to find t0

Alignment algorithms

Check and correct the covariance matrixes of fitting tools

Automatic Quality Assurance (Lia, Tobias)

Tracking with muon chambers

Tracking with different particle type

Alternative Kalman Filter algorithms

Track cleaning

Association of MC particles to reconstructed tracks (Lia, Tobias)

Analysis

Check of correct combinatory, overlap logic

Validation of fitter results (on idealized 'toy' candidates and on "real" data)

Validation of MC truth mapping, and MC tree match

Estimation of PID quality (loose, tight...) efficiencies/purity

Diagnostics of PID raw values distributions

Validation of complete analysis chain with complicated channels

Automatic Quality Assurance

Particle Identification

Improve detector correlation with tracking

Implement MVD de/dx with different methods (see TDR)

PID for Shashlik

PID using time-of-flight detectors

Automatic Quality Assurance

Event Generators

Comparison between different background generators (DPM, Pythia, Fluka, FTF)

Code Management

Release manager

Memory profiling and leakages finding

Cleaning of data structure

General tasks

Quality Assurance system for all the systems

Tag algorithms for event selection

Development of a framework inside Panda(Fair)Root to handle event times

Include time as an individual parameter into the reco algorithms of the detectors

Development of algorithms to extract the t0 time from the detector data

Propagation of the time in GEANE

Event building

MC Truth matching with FairLinks (Tobias)

Usage of different hardware types (FPGA / GPU) in combination with PandaRoot

Magnetic field handling at different beam momenta

Database interface of all the detectors and table design

Geometry

ROOT to STEP converter

Update of yoke geometry

Passive volumes description in all the detectors

Distributed computing

GRID Software management

GRID Data management

GRID Central administration

Exploration of new distributed systems

Status of Computing

- No additional manpower was sent for code developments
- The few tasks in blue attacked by the existing manpower
- ❖ People leaving, maybe ending PhD, and scarce new forces

A Common Task Committee has been nominated, but activities were somehow blocked due to our uncertain future

Destructive interference coming from the Heuer review outcome

- Difficulty/impossibility to have contracts for PANDA
- > People discouraged thinking about something else
- Difficulty to do long term plans
- Computing TDR activities in stand-by
- INFN froze Italian activities

Status of Computing

Italian software involvement in standby

Torino

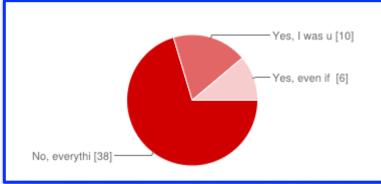
- Computing coordination ongoing
- Code and release management reduced
- ➤ MDT developments stopped (contract almost expired)
- Secondary and GEM tracking stopped (contract expired)

Pavia

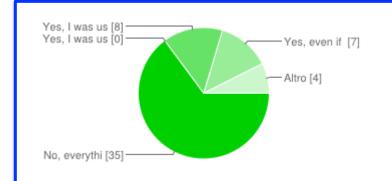
- Tracking coordination ongoing
- STT developments stopped
- Central tracking finished no further activities planned

Ferrara

- FTS developments stopped
- Forward tracking studied stopped


Status of Computing

Questionnaire: Installation


Did you have problems with the installation of external packages?

No, everything smooth	38	70%
Yes, using a non supported system	10	19%
Yes, even if the system was supported	6	11%

Several people like to try new OS (our beta tester) Sometimes problems of the cern repository

Did you have problems with the installation of PandaRoot?

No, everything was smooth	35	65%
Yes, using a non-supported release	0	0%
Yes, a version of the trunk crashing	8	15%
Yes, the version was the suggested one		13%
Altro	4	7%

Status of Computing

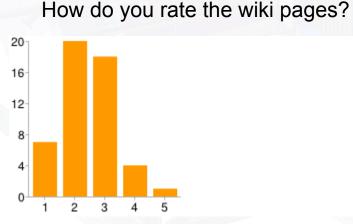
- Mostly trunk versions crashing due to recent updates, fixed quickly in the next hours
- Confusions about the "suggested version" (we have improved it > wiki)
- ➤ In general problems are fixed in a short time, thanks to forum or collegues
- Installation is not an issue for software users! <a>©

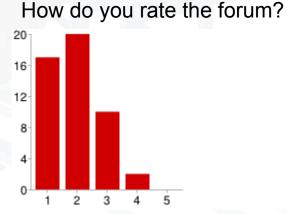
Nevertheless Virtual Machine were provided for releases oct14 and mar15:

- √ 1 request for password for oct14
- √ 0 requests for password for mar15

People prefer to install the software by themselves

The idea to organize a new Computing Week, but due to the review...

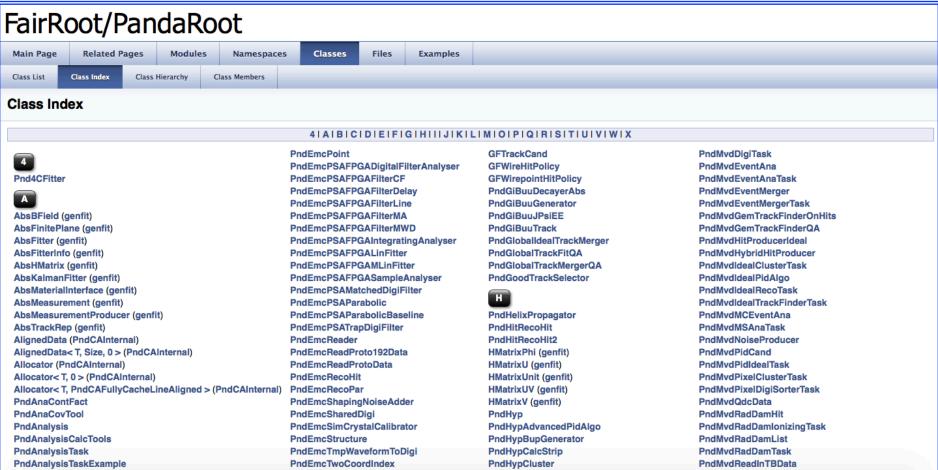

Documentation



How do you find usually information about the software?

I check the wiki documentation		70%	I check the wiki					
I check the the Computing Week INDICO		26%	I check the docum					
I send a mail to the Computing Coordinator	17	31%	I send a mail to					
I read the forum and, if needed, write a message		69%	I read through th					
I ask colleagues	28	52%	I ask colleagues-					
Altro	7	13%	Altro-					
			0	8	16	24	32	40

- ➤ People are happy of the forum, answers are received in a short time ③
- ➤ People not so happy with documentation, and wiki covers few aspects
- ▶People noticed (and are happy of) an improvement of wiki documentation ☺

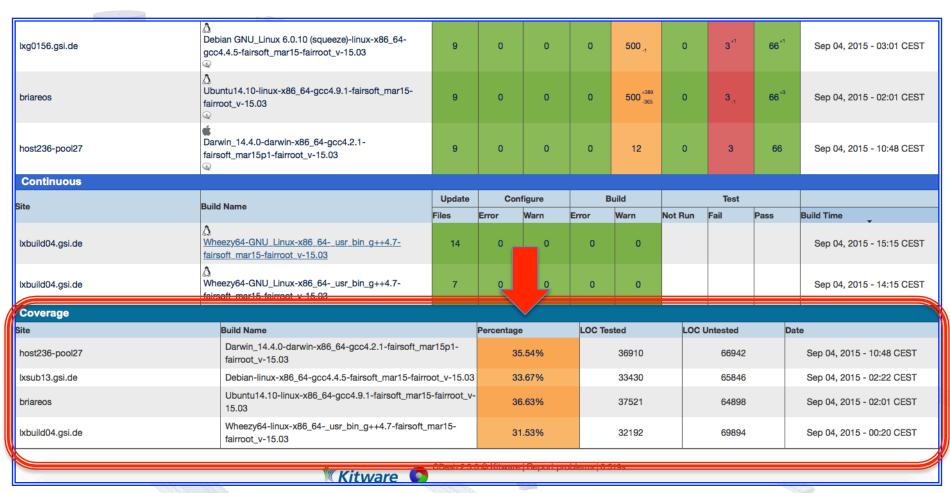


Documentation

http://cbmroot.gsi.de/panda_doc/daily/html/classes.html

Doxygen

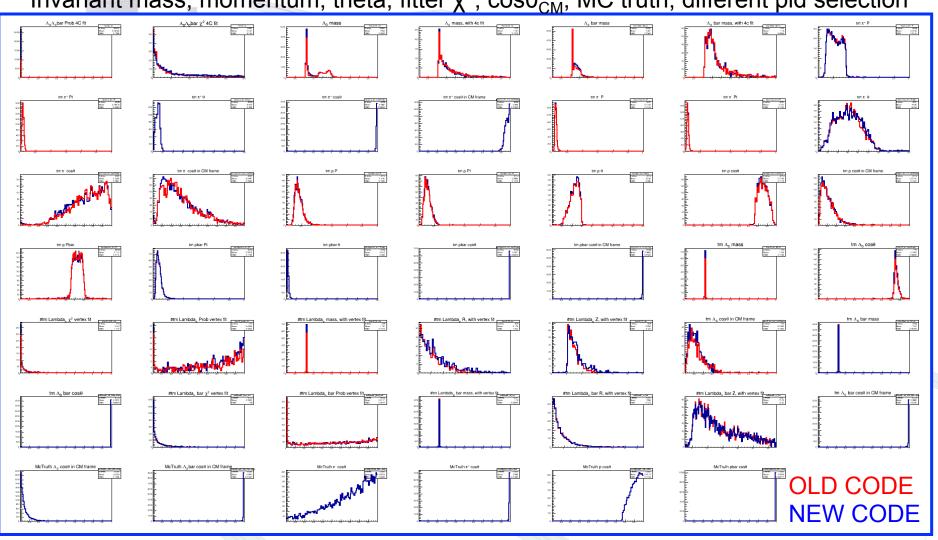
It exists since the beginning of PandaRoot But many people were not aware



Code Coverage

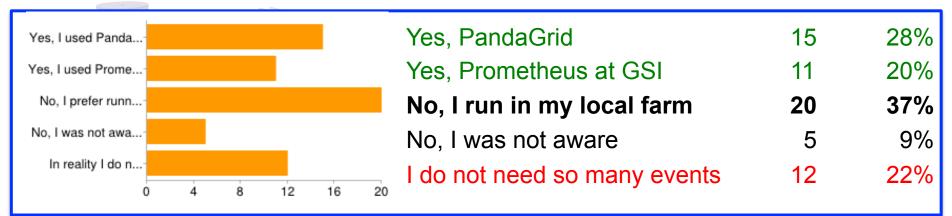
Automatic code coverage checks each night in Dashboard

We started to add more QA tests on the dashboard Now 36% coverage (we started with < 20%)


Quality Assurance - Analysis

Set of physics variables, compared to a sample file

Invariant mass, momentum, theta, fitter χ^2 , $\cos\theta_{CM}$, MC truth, different pid selection

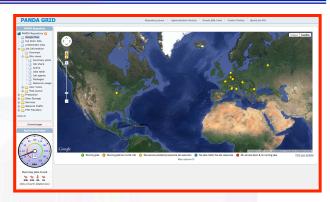


Status of Computing

Have you ever used the production systems for massive simulations?

Coordinated data production

- ✓ contact
 - Production Manager Paul Bühler paul.buehler@oeaw.ac.at
 - Computing Coordinator Stefano Spataro spataro@to.infn.it.
- together define procedure and perform production of data set
- ✓ list of available data sets is updated on https://panda-wiki.gsi.de/foswiki/bin/view/Computing/Productions


Data Production Systems

PandaGrid

- ✓ Around 1200 cores
- √ >100 TB disk space
- ✓ Empty most of the times

Prometheus farm @ GSI (Kronos becoming available)

- √ 10k cores for all the GSI/FAIR experiments (max queue 2000)
- √ 160 TB disk space
- ✓ Always busy and disk full

New FAIR-Russia Research Center @ ITEP (Moscow)

- √ 10000 cores
- √ 1PB disk space
- ✓ Almost empty (only theory runs there)

Probable Tier1 Center

Paul tested the performances, we can start to use it

Status of Computing

Speaking about Computing TDR

The Original plan

- End 2015 FAIR Computing TDR (with Panda requirements)
- End 2016 Panda Computing TDR

- ✓ Started requirements calculations (see my talk Dec 2014)
- ✓ Started design of distributed models (see Thorsten talk mar 2015)
- ✓ Started search for candidates Tier-1 (negotiation with INFN for CNAF)
- ✓ PANDA strongly involved in the FAIR Computing TDR activities

Heuer review froze all the computing activities

Uncertainty on day-1 date (202?)
Lost CNAF as possible Tier-1
INFN sites in PandaGrid?

- Monalisa server @ Torino
- Replica of DB @ Torino
- 200 cores, 40 TB @ Torino
 - 100 cores,10 TB @ CNAF lost

The FAIR Tier-0 Green Cube

- ➤ 6 floors (starting with 2)
- ➤ 128 racks each floor (8 rows with 16 racks)
- > Each rack can provide:
 - Data: 0.6 PB
 - Cores: 1800

- Construction work started in fall 2014
- ➤ Building finished summer 2015
- > Tests and migration
- Starting normal operations end of 2015

Successfull prototype: "Prometheus" (mini-cube)

Computing Requirements

In dec 2014 first estimation was present, with ideas about a distribution model

FULL

1MHS06, 58 PB disks, 69 PB/year tape

(let's forget about continuous data stream)

(if 1 core = $10 \text{ HS}06 \rightarrow 100 \text{k core}$)

Afterwards, compression of MC truth data: 45 PB disks, 34PB/year tape

What about running at low luminosity for several years?

LOMINOSITY

Ideally, let's scale resources of a factor 10

@ 2 MHz performances close to "event based" simulation (maybe we don't need time-based simulation?)

100kHS06, 5 PB disks, 4 PB/year tape

GreenCube (Tier0) + ITEP (Tier1) + PandaGrid could be enough

Summary

Target Spectrometer: advanced status (different level of details)

Forward Spectrometer: a lot of things to do (but RICH!)

Several SG criticalities were attacked (even before SG)

- ✓ Documentation (wiki + doxygen) improved
- ✓ Code quality (automatic code coverage and QA)
- ✓ Virtualization, but installation is no problem for users
- ✓ Improved time-based-simulation -> TS
- ✓ Centralized data production stressed again

Computing TDR

- Make no sense too much early technology dependent
- With low luminosity, computing not so demanding

Resources and manpower are the real problem!!