

Charmonium-like exotics (CCE) Physics Working Group

Frank Nerling Helmholtz Institute Mainz, GSI Darmstadt

Charmonium-like Exotics PWG

• New structure, three Physics Working Groups since 2014

- > Charmonium
- Charmonium-like Exotics
- Light Quark Mesons
- Regular joint meetings (JourFix: Wed, 10h30)
 - Large overlap in activities and interests
- Manpower situation
 - Participation in the joint meetings: 5-10 people
 - Merely 3-4 analysts actively involved during scrutiny process in 2014
 - At present: 3 active physics analysis (fullSim, pandaRoot)

Charmonium-like Exotics PWG

Who we are:

- Univ. Bochum
 - M.Pelizaeus

GSI Darmstadt

K.Götzen, R.Kliemt, F.Nerling

• JINR Dubna

- M.Barabanov, A.Luchinsky, A.Zinchenko, tbc
- INFN Ferrara
 - E.Fioravanti
- Univ. Giessen
 - M.Galuska, S.Lange, tbc
- FZ Jülich
 - ➢ E.Prencipe, tbc
- HI Mainz
 - > T.Weber, tbc
- BINP Novosibirsk
 - ➢ A.Blinov, tbc

Charmonium-like Exotics PWG

• Univ. Bochum

- Study for spin-exotic charmonium hybrid η_{cl} , further channels (PANDA Phys. Perf. Report)
- Very quick, first look to kinematics at PANDA for Zc(4430)

GSI Darmstadt

- Scrutiny studies for X,Y,Z (feasibility for various charmonia and recoils)
- X(3872) resonance energy scan (width, lineshapes)

• JNR Dubna

- PandaRoot QA checks
- EvtGen modelling for X(3872)

• INFN Ferrara

Scrutiny studies for X(3872)

• Univ. Giessen

- X(3872) resonance energy scan (width)
- Search for Zc(3730) at PANDA

• FZ Jülich

- Y(4260) first studies (also Giessen)
- Search for Zc(3730) at PANDA

• HI Mainz

> X(3872) resonance energy scan (trial to extract lineshape, importance of precise lumi)

BINP Novosibirsk

- Study of pbar d \rightarrow Z⁻ p, with additional recoil proton detector
- Search for Zc(3730) at PANDA (also Jülich)

Frank Nerling

Report from the Charmonium-like Exotics PWG

- PANDA Physics Performance Report
 - old analysis framework
 - among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ $\psi\pi^-\pi^+$ (J/ ψ → e+e- and partly also mu+mu-)
 - 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

- PANDA Physics Performance Report
 - old analysis framework
 - among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ψπ⁻π⁺ (J/ψ → e+e- and partly also mu+mu-)
 - 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

• PANDA Physics Performance Report

- > quite some work went in
- not up-to-date anymore
- not sufficient anymore
- need an update (Physics Book)

And therefore:

- → detailed, dedicated pandaRoot simulation studies with a reasonable detector description to be conclusive!
- → take into account recent news, facts and measurements

FAIR/PANDA/Physics Book

Physics Performance Report for:

PANDA

(AntiProton Annihilations at Darmstadt)

Strong Interaction Studies with Antiprotons

PANDA Collaboration

To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be build. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-procision tests of the strong interaction. The proposed PANDA detector is a state-of-theart internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range.

This report presents a summary of the physics accessible at $\overline{P}ANDA$ and what performance can be expected.

- PANDA Physics Performance Report
 - old analysis framework
 - > among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ψπ⁻π⁺ (J/ψ → e+e- and partly also mu+mu-)
 - > 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

Short Summary of Results, FoMs

 $\sigma_s = 10 \text{ nb}, E_{cms} = 5.5 \text{ GeV}, 1 \times 10^{32}$

10nb	L/cms			
Гана	detopt		Full	
E_CM	mode	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	7,0	0,004	✓
	etac(2Kpi0) 2pi0	3,0	0,016	✓
	etac(2Kpi0) 2eta	9,4	0,20	✓
	etac(2Kpi0) 2K	1,4	0,079	\checkmark
	etac(KsKpi) 2pi	3,7	0,11	✓
	etac(KsKpi) 2pi0	3,7	0,26	✓
	etac(KsKpi) 2eta	10	0,19	✓
FF	etac(KsKpi) 2K	2,8	0,69	\checkmark
5,5	Jpsi(2e) 2pi	0,8	2,6	✓
	Jpsi(2e) 2pi0	0,9	2,1	✓
	Jpsi(2e) 2eta	3,8	0,57	✓
	Jpsi(2e) 2K	0,7	2,7	✓
	Jpsi(2mu) 2pi	0,6	3,1	✓
	Jpsi(2mu) 2pi0	0,6	3,0	✓
	Jpsi(2mu) 2eta	2,3	0,82	✓
	Jpsi(2mu) 2K	0,5	3,8	✓

 σ_s =1 nb, E_{cms}= 5.5 GeV, 1x10³¹

1nb	L/cms			
Г. от	detopt		Full	
E_cm	mode	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	701	0,000	<
	etac(2Kpi0) 2pi0	291	0,002	✓
	etac(2Kpi0) 2eta	118	0,020	✓
	etac(2Kpi0) 2K	43	0,008	\checkmark
	etac(KsKpi) 2pi	88	0,011	✓
	etac(KsKpi) 2pi0	37	0,026	✓
	etac(KsKpi) 2eta	133	0,019	✓
	etac(KsKpi) 2K	28	0,069	\checkmark
5,5	Jpsi(2e) 2pi	7,6	0,26	✓
	Jpsi(2e) 2pi0	9,2	0,21	✓
	Jpsi(2e) 2eta	38	0,057	✓
	Jpsi(2e) 2K	7,2	0,27	✓
	Jpsi(2mu) 2pi	6,3	0,31	✓
	Jpsi(2mu) 2pi0	6,4	0,30	\checkmark
	Jpsi(2mu) 2eta	24	0,082	\checkmark
	Jpsi(2mu) 2K	5,1	0,38	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1 Dal QA ok < 1.5

[K .Götzen, R. Kliemt, F. Nerling]

- PANDA Physics Performance Report
 - old analysis framework
 - among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ψπ⁻π⁺ (J/ψ → e+e- and partly also mu+mu-)
 - 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

Knowns and missings on the X(3872)

Already known:

- Observed by 7 experiments
- Observed in 5 decay channels
- Quantum numbers J^{PC}=1⁺⁺
 charmonium potential model: χ_{c1}'
 → predicted mass ≥ 50 MeV larger

[Barnes, Godfry, Swanson, Phys. Rev. D72 (2005) 054026]

• Not produced in $e^+e^- \rightarrow \gamma^* \rightarrow X(3872)$ ($e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow X(3872)$ possible but suppressed)

Important knowledge missing & needed:

- Width, only upper limit (Bellel): $\Gamma < 1.2 \text{ MeV}$
 - → prediction for pure charmonium state χ_{c1} ': $\Gamma = 40 \text{ keV}$ [G.Y. Chen, J.P. Ma, Phys. ReV. D77 (2008) 034019]
 - → prediction for molecule, must be larger than width of D*:
 Γ > 82.3±1.2±1.4keV
 [E.Braaten, Phys. Rev. D77 (2008) 034019]

=> precise (sub-MeV) measurement of the width of the X(3872), indeed needed the lineshape!

How PANDA can contribute: Study lineshapes

- Panda: Neutral & charged, e.g. $J/\psi \pi^- \pi^+$, $J/\psi \pi^0 \pi^0$, $\chi_c \gamma \rightarrow J/\psi \gamma \gamma$, $J/\psi \gamma$, $J/\psi \eta$, $\eta_c \gamma$, ...
- Direct formation in $\overline{p}p \rightarrow lineshapes$
- Example: X(3872)

X(3872) – released result

- Upper limit on branching ratio by LHCb: $BR(X \rightarrow \bar{p}p) < 0.002^*BR(X \rightarrow J/\psi \pi \pi^+) \rightarrow \Gamma < 1.2 \text{ MeV}$ EPJ C73 (2013) 2462
- And BR(X \rightarrow J/ $\psi\pi^{-}\pi^{+}$) > 0.026 (PDG 12) => $\sigma(\bar{p}p \rightarrow X(3872)) < 67 \text{ nb}$

Measurement of Γ=100 keV with 20% relative error

[M.Galuska, Master thesis]

Lineshapes for different E_f

Scan Examples Molecule Lineshape

HR: 21 x 2 days E_f = -5 MeV

HESRr: 21 x 2 days Γ = 100 keV

Scan Examples Molecule Lineshape

-> Talk by K. Götzen, PWGs 18th Nov & 1st Dec2015

- PANDA Physics Performance Report
 - old analysis framework
 - among others dedicated studies for Charmonium-like exotics
- Scrutiny studies
 - fastSim studies (tuned to full sim)
 - for X,Y,Z production, various charmonia and recoils
- Dedicated X(3872) energy scan studies
 - > pbarp → X(3872) → J/ψπ⁻π⁺ (J/ψ → e+e- and partly also mu+mu-)
 - 3 independent analyses (M.Galuska, T.Weber, K.Götzen)

 \rightarrow with different focus and levels of completeness,

cf. Master thesis, IN-REP-2015-005, Talks at last PWG meetings, respectively

- X,Y,Z production and proposal of a search for Z(3730) at PANDA
 - estimate of X,Y,Z states produced at PANDA
 - > Search for $X \rightarrow Z$ transition (S.Lange, E.Prencipe, A.Blinov, ...)
 - > Zc production on deuterim target: pd \rightarrow Z⁻p (A.Blinov)

Search for $X \rightarrow Z$ transitions at PANDA

Talk by S.Lange, CM Uppsala, Sep 2015

Open questions about Z states

- charged and neutral Z states \rightarrow same mass ? [ccuu,ccdd] vs. [ccud]
- why are all the Z states observed above threshold ? (contradicts interpretation as molecules and CUSPs)
- transitions of XYZ states ? $Y \rightarrow Z$, seen at BESIII (Y(4260) \rightarrow Z(3900) π^+) $Y \rightarrow X$, seen at BESIII (Y(4260) \rightarrow X(3872) γ) \rightarrow what about X \rightarrow Z transistions?

Z near DD threshold0+never observedZ near DD* threshold1+Z(3900)Z near D*D* threshold0+,1+,2+Z(4020)

Search for $X \rightarrow Z$ transitions at PANDA

 $\bar{p}p \rightarrow X(3872) \rightarrow Z(3730)\pi$ $X(3872) \rightarrow Z(3730)^0 \pi^0$ (with L=1), Talk by S.Lange, PWG Uppsala, June 2015 where $Z(3730)^0$ decays to $J/\psi\gamma$ and $\chi_{c1}\pi^0$ Also, possible charged $Z(3730)^+$ candidate, decaying to $\chi_{c1}\pi^+$,

with subsequent $\chi_{c1} \to J/\psi\gamma$

Z⁰(3730) Signal

An internal PANDA note...

A proposal for Z state search and estimate of X, Y, Z production rates at $\overline{P}ANDA$.

Alexander Blinov, Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk (Russia); Martin Galuska, Justus-Liebig-Universität, Giessen (Germany); Jens Sören Lange, Justus-Liebig-Universität, Giessen (Germany); Elisabetta Prencipe, Forschungszentrum Jülich (Germany); James Ritman, Forschungszentrum Jülich (Germany);

on behalf of the $\overline{P}ANDA$ charmonium-light exotics group.

Abstract

The $\bar{\rm P}ANDA$ detector at FAIR (Facility for Antiproton and Ion Research) in Darmstadt (Germany) aims to conduct an antiproton-proton experiment with a very high rate capability, up to 10^7 interactions per second. In the past 12 years several unpredicted resonant states were observed. Prominent examples are the so-called Z charged states and their neutral partners, that were first observed at the Belle and BES III experiments two years ago. Some of them have recently been confirmed by LHCb. They have risen the interest in searching for further charmonium-like states. Measurements in $\bar{p}p$ annihilation are complementary to what has been achieved in this sector by e^+e^- colliders, and running experiments in pp collisions. In this short report, we present some extrapolations to understand the level of competitiveness of $\overline{\rm P}ANDA$, in the first day of data taking, assuming a luminosity $\mathcal{L}=10^{31}~{\rm cm}^{-2}~{\rm s}^{-1}$.

 $\succ \bar{p}p \rightarrow X(3872) \rightarrow Z(3730)\pi$

Table 2: Summary of the expected X, Y, and Z production rates per day in $\overline{P}ANDA$, assuming different detector luminosity ($\mathcal{L}/pb^{-1}/day$). The calculation is performed by multiplying luminosity and cross sections. The cross section upper limits are used in these calculations.

Resonance	$\mathcal{L}=8.64$	$\mathcal{L}{=0.864}$	$\mathcal{L}{=}0.432$	Ref.
X(3872)	432000	43200	21600	[18]
Y(4260)	19000	1900	950	
$Z(3900)^{+}$	4050	405	202	[13]

 \triangleright

Panda Another unique PANDA possibility: pd → Z⁻p

Frank Nerling

Report from the Charmonium-like Exotics PWG

Panda Another unique PANDA possibility: pd → Z⁻p

ī a n)d a elmholtz-Institut Mair Further channels of interest – many, still in 2025? what counts for us most, uniqueness!

Cleven et al., arXiv:1505.01771

- Many more charged and neutral channels predicted than observed
 - 67 among 80 ground states still to be discouvered
- Only PANDA has discovery potential for high spin states (angular momentum barrier)
 - \blacktriangleright e.g. predicted J = 3 state
- Observation of complete multiplets needed to solve X,Y,Z puzzle

=> PANDA

[C.Hahnhart, GSI, May 2015]

HIN

Charmonium-like Exotics at PANDA

Charmonium-like exotics at PANDA

- > uniquely gluon-rich process: ppbar
 → high cross section for states with gluonic excitations / exotics
 > unique in precise measurement of widths
 → sub-MeV range, needed to understand X, Y,Z nature
 > unique in discovery potential for high spins:
 - \rightarrow no angular momentum barrier (and no restriction spin)

Even topics for Early Physics Beam

- X(3872) energy scan
- Charmonium survey (incl. Zc, Hybrids)

=> Only PANDA will enable to explore complete multiplets & clarify nature of X,Y,Z

Charmonium-like Exotics at PANDA

Manpower situation

- Only 3 full simulation studies focusing on physics "results"
 → feasibility studies for scrutiny started to extend to fullSim
- Many more channels to be updated, and also to be started
 new ideas and proposals of course welcome, also active analysts

Future plans to enrich PANDA repertoire of unique PANDA physics:

- Prioritise work on channels, extend coverage of complete physics case
 - ightarrow full simulations with realistic background estimations
 - \rightarrow extension to include angular distributions (PWA)
 - \rightarrow go for more realistic generators (incl. charm)
- Combine efforts as much as possible (CC, LQM, ,,,)
 - \rightarrow data production, knowledge, ...

=> New manpower welcome!

Additional slides

Frank Nerling

Report from the Charmonium-like Exotics PWG

03/12/2015

Charmonium(-like) Spectrum

- Since 2003 charmonium-like spectrum found richer as expected
- Observation of states that do not fit theoretical models/predictions
- The case of the X(3872):
 - isospin violating, very narrow
 - quantum numbers known (1⁺⁺, LHCb)
 - width unclear
 - → nature not yet clear..

needed: measurement of width

- X,Y,Z states:
 - some need still confirmation
 - masses poorly known
 - statistics poor, nature unclear: Molecules, tetraquarks, hybrids, ..? Z_c(3900): First order exotic?

"Old Released" results

Summary of "old released PANDA plots and results" – Meson spectroscopy

> The PANDA Charmonium, Charmonium-like Exotics and Light Quark Meson Physics Working Groups

> > Editors:

E. Fioravanti¹, F. Nerling², and M. Pelizaeus³

¹INFN Ferrara ²HIM, GSI Darmstadt ³Ruhr-Universitaet Bochum

November 19, 2015

Chapter 2

Charmonium-like Exotics

In the following sections, we summarise the results obtained from MC simulation studies performed in view of the feasibility of PANDA for spectroscopy of charmonium-like exotics, like the famous X,Y,Z states.

- Study for spin-exotic charmonium hybrid $\tilde{\eta}_{c1}$ $\rightarrow M.Pelizaeus$
- Study of X(3872) energy scan
 - \rightarrow M.Galuska et al.
- Study of Y(4260) \rightarrow *E*.*Prencipe et al.*
- Study of Zc(4430) state → M.Pelizaeus

Charmonium-like Exotics at PANDA

Manpower situation

- Only 3 full simulation studies focusing on physics "results"
 - \rightarrow feasibility studies for scrutiny started to extend to fullSim
- Many more channels to be updated, and also to be started → new ideas and proposals of course welcome, also active analysts
- A recent internal notes on behalf of the PWG
 - ightarrow good discipline in documenting and following new rules

Future plans to enrich PANDA repertoire of unique PANDA physics:

Prioritise work on channels, extend coverage of complete physics case

- \rightarrow full simulations with realistic background estimations
- \rightarrow extension to include angular distributions (PWA)
- \rightarrow go for more realistic generators (incl. charm)
- Combine efforts as much as possible (CC, LQM, ,,,)
 - \rightarrow data production, knowledge, ...

=> New manpower welcome!

Sensitivities Molecule Lineshapes (31 x 2d)

- Extract standard deviation and bias from toy MC fits
- How well can virtual and bound state be distinguished?
- Uncertainty = $\sigma_{Gaussian} \rightarrow$ Integrate in mismatch region

Generated J/ ψ Plots Examples

- Signal pdf like in true reco; background flat
- Scaled bkg efficiency $ROI \rightarrow full window$ width (x 4)

Illustration for Scan

List of channels / charmonia (XYZ states):

•
$$J/\psi + X$$
, $J/\psi -> e^+e^-/\mu^+\mu^-$
• $\eta_c + X$, $\eta_c -> K^+K^-\pi^0/K_sK^{+/-}\pi^{-/4}$

→ with various recoils: $X = \pi^- \pi^+$, $\pi^0 \pi^0$, $\eta \eta$, KK

 \rightarrow at different energies: E_{cms} = 4.5, 5.5 GeV

 \rightarrow and the various **detector options** (1+5)

Scenarios proposed:

- a) Nominal Set-up: 1,2,3,4,5 b) w/o Barrel EMC: 1,3,4,5 c) w/o FS: 1,2,3,4
- d) w/o Disc DIRC: 1,2,3,5
- e) w/o Barrel DIRC: 1,2,4,5

f) STT only:

Statistics: 1 M signal evts, 1000 M DPM bkgrd evts

2,3,4,5

FoM: Significance, S/B, Efficiency

• Time needed to achieve 5σ significance = S / sqrt(S+B) (for the excl. pbarp system)

Significance (t) =
$$\sqrt{L \cdot t} \cdot \frac{\sigma_s \cdot \varepsilon_s \cdot f_{BR}}{\sqrt{\sigma_s \cdot \varepsilon_s \cdot f_{BR} + \sigma_b \cdot \varepsilon_b}}$$

- Signal to Bkgd $S / B = \frac{\sigma_s \cdot \varepsilon_s \cdot f_{BR}}{\sigma_b \cdot \varepsilon_b}$
- Signal Efficiency ϵ_s

Proposed FoM: Significance

Example: $\eta_{c} + \pi^{-}\pi^{+} \rightarrow K^{+}K^{-}\pi^{0} + \pi^{-}\pi^{+}$ at 4.5 GeV

 $σ_s = ~10 \text{ nb}, σ_b = 60 \text{ mb}$ $f_{BR} = 3.5 \%, L = 2 \times 10^{32}$ $ε_s = 22.6\%, ε_b = 2.0 \times 10^{-6}$

Proposed FoM: Significance

Example: $\eta_{c} + \pi^{-}\pi^{+} \rightarrow K^{+}K^{-}\pi^{0} + \pi^{-}\pi^{+}$ at 4.5 GeV

 $σ_s = ~1 nb, σ_b = 60 mb$ $f_{BR} = 3.5 \%, L = 2 x 10^{32}$ $ε_s = 22.6\%, ε_b = 2.0 x 10^{-6}$

 $\sigma_s = 1 \text{ nb}, E_{cms} = 5.5 \text{ GeV}$

1nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC No Barrel DIRC STT only Tracking																
Г. ата	detopt		Full			No FS		No	Emc Bai	rrel	Ν	o Disc Dl	RC	No	Barrel D	IRC	STT	only Trac	cking
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	701	0,000	✓	748	0,001	✓	1259	0,001	~	1176	0,000	<	1979	0,000	✓	16402	0,000	✓
	etac(2Kpi0) 2pi0	291	0,002	✓	342	0,005	✓	4928	0,001	✓	285	0,002	\checkmark	273	0,002	\checkmark	1249	0,001	\checkmark
	etac(2Kpi0) 2eta	118	0,020	✓	893	0,008	✓	35472	0,001	✓	82	0,025	✓	243	0,008	\checkmark	495	0,010	\checkmark
	etac(2Kpi0) 2K	43	0,008	✓	27	0,073	✓	73	0,009	✓	315	0,003	\checkmark	148	0,004	\checkmark	297	0,013	\checkmark
	etac(KsKpi) 2pi	88	0,011	✓	45	0,043	✓	87	0,012	✓	296	0,005	~	222	0,009	✓	35452	0,001	✓
	etac(KsKpi) 2pi0	37	0,026	✓	91	0,023	✓	198	0,016	×	61	0,032	✓	75	0,026	\checkmark	991	0,007	\checkmark
	etac(KsKpi) 2eta	133	0,019	✓	1759	0,005	✓	14200	0,002	✓	171	0,017	✓	133	0,019	\checkmark	8878	0,002	✓
	etac(KsKpi) 2K	28	0,069	✓	41	0,047	✓	26	0,074	✓	79	0,025	✓	60	0,032	\checkmark	8878	0,002	✓
5,5	Jpsi(2e) 2pi	7,6	0,26	✓	14	0,16	✓	10	0,19	~	7,8	0,25	~	8,0	0,24	✓	57	0,034	✓
	Jpsi(2e) 2pi0	9,2	0,21	✓	19	0,10	✓	43	0,045	×	9,3	0,21	✓	10	0,20	\checkmark	24	0,082	\checkmark
	Jpsi(2e) 2eta	38	0,057	✓	146	0,019	✓	1868	0,005	×	37	0,058	✓	38	0,051	\checkmark	109	0,021	✓
	Jpsi(2e) 2K	7,2	0,27	✓	10	0,20	✓	7,4	0,26	✓	7,2	0,27	✓	7,4	0,29	\checkmark	67	0,029	\checkmark
	Jpsi(2mu) 2pi	6,3	0,31	✓	10	0,094	✓	7,5	0,26	~	7,9	0,24	~	7,8	0,28	✓	50	0,039	✓
، د ا ر ا ر	Jpsi(2mu) 2pi0	6,4	0,30	✓	16	0,12	x	31	0,063	×	7,1	0,27	✓	7,2	0,27	\checkmark	20	0,099	\checkmark
	Jpsi(2mu) 2eta	24	0,082	✓	69	0,031	✓	732	0,009	×	24	0,082	✓	24	0,082	\checkmark	67	0,029	\checkmark
	Jpsi(2mu) 2K	5,1	0,38	✓	6	0,31	\checkmark	5,5	0,35	✓	5,3	0,37	✓	5,1	0,38	\checkmark	49	0,040	✓

Time QA (da	ays)	
green < 30	yellow < 365	red >= 365

S/B QA green > 1 yellow > 0.1 red <= 0.1

Dal QA ok < 1.5

Frank Nerling

Report from the Charmonium-like Exotics PWG

 $\sigma_s = 10 \text{ nb}, E_{cms} = 5.5 \text{ GeV}$

10nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC No Barrel DIRC STT only Tracking																
Г. ст.	detopt		Full			No FS		N	o Emc Ba	rrel	Ν	o Disc Dl	RC	No	Barrel D	IRC	STT	only Trac	king
E_cm	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	7,0	0,004	✓	7,5	0,008	~	13	0,005	✓	12	0,003	<	20,00	0,002	✓	164	0,002	<
	etac(2Kpi0) 2pi0	3,0	0,016	\checkmark	6,1	0,045	✓	50	0,014	✓	2,9	0,017	✓	2,8	0,016	✓	13	0,013	✓
	etac(2Kpi0) 2eta	9,4	0,20	✓	28	0,078	✓	358	0,012	✓	7,9	0,25	✓	7,9	0,082	✓	20	0,099	✓
	etac(2Kpi0) 2K	1,4	0,079	✓	2,6	0,73	✓	2,5	0,086	✓	3,2	0,025	\checkmark	2,4	0,041	✓	15	0,13	\checkmark
	etac(KsKpi) 2pi	3,7	0,11	✓	4,5	0,43	✓	4,1	0,12	✓	5,7	0,048	✓	7,5	0,086	✓	356	0,006	✓
6 	etac(KsKpi) 2pi0	3,7	0,26	✓	8,3	0,23	✓	12	0,16	×	6,1	0,32	✓	7,5	0,26	✓	28	0,070	✓
	etac(KsKpi) 2eta	10	0,19	✓	37	0,053	✓	145	0,019	✓	11	0,17	✓	10,00	0,19	✓	91	0,023	✓
	etac(KsKpi) 2K	2,8	0,69	✓	4,1	0,47	✓	2,6	0,74	✓	7,7	0,25	✓	6,00	0,32	✓	91	0,023	✓
5,5	Jpsi(2e) 2pi	0,8	2,6	✓	1,4	1,6	✓	1,0	1,9	✓	0,8	2,5	✓	0,8	2,4	✓	5,7	0,34	✓
	Jpsi(2e) 2pi0	0,9	2,1	\checkmark	1,9	1,0	✓	4,3	0,44	×	0,9	2,1	✓	0,9	2,0	✓	2,3	0,82	✓
	Jpsi(2e) 2eta	3,8	0,57	✓	11	0,19	✓	40	0,054	×	3,7	0,58	✓	3,8	0,51	✓	9,1	0,21	\checkmark
	Jpsi(2e) 2K	0,7	2,7	\checkmark	1,0	2,0	✓	0,7	2,6	 ✓ 	0,7	2,7	✓	0,7	2,9	✓	6,7	0,29	✓
	Jpsi(2mu) 2pi	0,6	3,1	✓	1,0	0,94	✓	0,8	2,6	✓	0,8	2,4	✓	0,8	2,8	✓	5,0	0,39	~
	Jpsi(2mu) 2pi0	0,6	3,0	\checkmark	1,5	1,2	×	3,1	0,63	×	0,7	2,7	✓	0,7	2,7	✓	2,0	0,99	\checkmark
	Jpsi(2mu) 2eta	2,3	0,82	✓	6,9	0,31	✓	25	0,086	×	2,3	0,82	✓	2,3	0,82	✓	6,7	0,29	\checkmark
	Jpsi(2mu) 2K	0,5	3,8	\checkmark	0,6	3,1	✓	0,5	3,5	✓	0,5	3,7	✓	0,5	3,8	✓	4,9	0,40	\checkmark

Time QA (days)	
green < 30 yellow < 365	red >= 365

S/B QA green > 1 yellow > 0.1 red <= 0.1 Dal QA ok < 1.5

Frank Nerling

Report from the Charmonium-like Exotics PWG

1nb	L/cms		1,0E+30 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
E cm	detopt		Full			No FS		No	Emc Bar	rrel	No	o Disc Dl	RC	STT	only Trac	king
E_un	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	423239	0,0001	\checkmark	466074	0,0001	\checkmark	1E+06	0,0001	✓	559109	0,0001	~	4E+06	0,0001	\checkmark
	etac(2Kpi0) 2pi0	229605	0,0002	\checkmark	367916	0,0003	\checkmark	1E+07	0,0001	\checkmark	252394	0,0002	\checkmark	630019	0,0002	\checkmark
	etac(KsKpi) 2pi	4530	0,043	\checkmark	4295	0,045	\checkmark	7273	0,018	\checkmark	7349	0,026	\checkmark	2E+06	0,001	\checkmark
15	etac(KsKpi) 2pi0	5802	0,033	\checkmark	7349	0,026	\checkmark	63539	0,009	×	5421	0,036	\checkmark	189516	0,003	\checkmark
4,5	J/psi(2e) 2pi	756	0,26	\checkmark	1073	0,20	\checkmark	1232	0,16	\checkmark	750	0,26	\checkmark	3991	0,048	\checkmark
	J/psi(2e) 2pi0	911	0,21	\checkmark	2036	0,095	×	18151	0,016	×	920	0,21	\checkmark	1919	0,10	\checkmark
	J/psi(2mu) 2pi	783	0,25	\checkmark	1018	0,19	\checkmark	808	0,24	\checkmark	705	0,27	\checkmark	3326	0,058	\checkmark
	J/psi(2mu) 2pi0	715	0,27	×	1523	0,13	×	6047	0,032	×	795	0,24	×	1523	0,13	\checkmark
	etac(2Kpi0) 2pi	70136	0,0004	\checkmark	74815	0,0008	\checkmark	125854	0,0005	\checkmark	117629	0,0003	~	2E+06	0,0002	\checkmark
	etac(2Kpi0) 2pi0	29140	0,002	\checkmark	34175	0,005	\checkmark	492784	0,001	\checkmark	28460	0,002	\checkmark	124882	0,001	\checkmark
	etac(KsKpi) 2pi	8840	0,011	\checkmark	4530	0,043	\checkmark	8742	0,012	\checkmark	29633	0,005	\checkmark	4E+06	0,001	\checkmark
55	etac(KsKpi) 2pi0	3674	0,026	\checkmark	9064	0,023	\checkmark	19747	0,016	×	6124	0,032	\checkmark	99108	0,007	\checkmark
5,5	J/psi(2e) 2pi	756	0,26	\checkmark	1367	0,16	\checkmark	1003	0,19	\checkmark	780	0,25	\checkmark	5702	0,034	\checkmark
	J/psi(2e) 2pi0	915	0,21	\checkmark	1865	0,10	\checkmark	4338	0,045	×	933	0,21	\checkmark	2348	0,082	\checkmark
	J/psi(2mu) 2pi	628	0,31	\checkmark	1023	0,094	\checkmark	750	0,26	\checkmark	789	0,24	\checkmark	4989	0,039	\checkmark
	J/psi(2mu) 2pi0	642	0,30	\checkmark	1547	0,12	x	3070	0,063	x	705	0,27	\checkmark	1956	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms		1,0E+31 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
E cm	detopt		Full			No FS		No	Emc Bar	rrel	No	o Disc Dl	RC	STT	only Trac	king
E_un	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	42324	0,0001	\checkmark	46607	0,0001	\checkmark	122059	0,0001	✓	55911	0,0001	\checkmark	362845	0,0001	\checkmark
	etac(2Kpi0) 2pi0	22961	0,0002	\checkmark	36792	0,0003	\checkmark	1E+06	0,0001	\checkmark	25239	0,0002	\checkmark	63002	0,0002	\checkmark
	etac(KsKpi) 2pi	453	0,043	\checkmark	430	0,045	\checkmark	727	0,018	\checkmark	735	0,026	\checkmark	177361	0,001	\checkmark
4 5	etac(KsKpi) 2pi0	580	0,033	\checkmark	735	0,026	\checkmark	6354	0,009	x	542	0,036	\checkmark	18952	0,003	\checkmark
4,5	J/psi(2e) 2pi	76	0,26	\checkmark	107	0,20	\checkmark	123	0,16	✓	75	0,26	\checkmark	399	0,048	\checkmark
	J/psi(2e) 2pi0	91	0,21	\checkmark	204	0,095	×	1815	0,016	×	92	0,21	\checkmark	192	0,10	\checkmark
	J/psi(2mu) 2pi	78	0,25	\checkmark	102	0,19	\checkmark	81	0,24	\checkmark	71	0,27	\checkmark	333	0,058	\checkmark
	J/psi(2mu) 2pi0	72	0,27	×	152	0,13	×	605	0,032	×	80	0,24	×	152	0,13	\checkmark
	etac(2Kpi0) 2pi	7014	0,0004	\checkmark	7482	0,0008	\checkmark	12585	0,0005	<	11763	0,0003	<	164015	0,0002	\checkmark
	etac(2Kpi0) 2pi0	2914	0,002	\checkmark	3417	0,005	\checkmark	49278	0,001	\checkmark	2846	0,002	\checkmark	12488	0,001	\checkmark
	etac(KsKpi) 2pi	884	0,011	\checkmark	453	0,043	\checkmark	874	0,012	\checkmark	2963	0,005	\checkmark	354515	0,001	\checkmark
55	etac(KsKpi) 2pi0	367	0,026	\checkmark	906	0,023	\checkmark	1975	0,016	×	612	0,032	\checkmark	9911	0,007	\checkmark
5,5	J/psi(2e) 2pi	76	0,26	\checkmark	137	0,16	\checkmark	100	0,19	\checkmark	78	0,25	\checkmark	570	0,034	\checkmark
	J/psi(2e) 2pi0	92	0,21	\checkmark	187	0,10	\checkmark	434	0,045	x	93	0,21	\checkmark	235	0,082	\checkmark
	J/psi(2mu) 2pi	63	0,31	\checkmark	102	0,094	\checkmark	75	0,26	\checkmark	79	0,24	\checkmark	499	0,039	\checkmark
	J/psi(2mu) 2pi0	64	0,30	\checkmark	155	0,12	×	307	0,063	×	71	0,27	\checkmark	196	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms		1,0E+32 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
	detopt		Full			No FS		No	Emc Bar	rel	N	o Disc Dl	RC	STT	only Trac	king
E_un	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	4232	0,0001	\checkmark	4661	0,0001	\checkmark	12206	0,0001	\checkmark	5591	0,0001	\checkmark	36285	0,0001	\checkmark
	etac(2Kpi0) 2pi0	2296	0,0002	\checkmark	3679	0,0003	\checkmark	141744	0,0001	✓	2524	0,0002	\checkmark	6300	0,0002	\checkmark
	etac(KsKpi) 2pi	45	0,043	\checkmark	43	0,045	\checkmark	73	0,018	\checkmark	74	0,026	\checkmark	17736	0,001	\checkmark
1 E	etac(KsKpi) 2pi0	58	0,033	\checkmark	74	0,026	\checkmark	635	0,009	×	54	0,036	\checkmark	1895	0,003	\checkmark
4,5	J/psi(2e) 2pi	7,6	0,26	\checkmark	10,7	0,20	\checkmark	12,3	0,16	✓	7,5	0,26	\checkmark	40	0,048	\checkmark
	J/psi(2e) 2pi0	9,1	0,21	\checkmark	20,4	0,095	x	182	0,016	×	9,2	0,21	\checkmark	19,2	0,10	\checkmark
	J/psi(2mu) 2pi	7,8	0,25	\checkmark	10,2	0,19	\checkmark	8,1	0,24	\checkmark	7,1	0,27	\checkmark	33	0,058	\checkmark
	J/psi(2mu) 2pi0	7,2	0,27	×	15,2	0,13	×	61	0,032	×	8,0	0,24	×	15,2	0,13	\checkmark
	etac(2Kpi0) 2pi	701	0,0004	<	748	0,0008	\checkmark	1259	0,0005	<	1176	0,0003	<	16402	0,0002	\checkmark
	etac(2Kpi0) 2pi0	291	0,002	\checkmark	342	0,005	\checkmark	4928	0,001	\checkmark	285	0,002	\checkmark	1249	0,001	\checkmark
	etac(KsKpi) 2pi	88	0,011	\checkmark	45	0,043	\checkmark	87	0,012	✓	296	0,005	\checkmark	35452	0,001	\checkmark
55	etac(KsKpi) 2pi0	37	0,026	\checkmark	91	0,023	\checkmark	198	0,016	×	61	0,032	\checkmark	991	0,007	\checkmark
5,5	J/psi(2e) 2pi	7,6	0,26	\checkmark	13,7	0,16	\checkmark	10,0	0,19	\checkmark	7,8	0,25	\checkmark	57	0,034	\checkmark
	J/psi(2e) 2pi0	9,2	0,21	\checkmark	18,6	0,10	\checkmark	43	0,045	×	9,3	0,21	\checkmark	23,5	0,082	\checkmark
	J/psi(2mu) 2pi	6,3	0,31	\checkmark	10,2	0,094	\checkmark	7,5	0,26	\checkmark	7,9	0,24	\checkmark	50	0,039	\checkmark
	J/psi(2mu) 2pi0	6,4	0,30	\checkmark	15,5	0,12	x	31	0,063	×	7,1	0,27	\checkmark	19,6	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

1nb	L/cms		2,0E+32 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
E cm	detopt		Full			No FS		No	Emc Bar	rel	N	o Disc Dl	RC	STT	only Trac	king
E_un	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	2116	0,0001	\checkmark	2330	0,0001	\checkmark	6103	0,0001	\checkmark	2796	0,0001	~	18142	0,0001	\checkmark
	etac(2Kpi0) 2pi0	1148	0,0002	\checkmark	1839,6	0,0003	\checkmark	70872	0,0001	\checkmark	1262	0,0002	\checkmark	3150	0,0002	\checkmark
	etac(KsKpi) 2pi	22,6	0,043	\checkmark	21,5	0,045	\checkmark	36	0,018	\checkmark	37	0,026	\checkmark	8868	0,001	\checkmark
4 5	etac(KsKpi) 2pi0	29,0	0,033	\checkmark	37	0,026	\checkmark	318	0,009	×	27,1	0,036	\checkmark	948	0,003	\checkmark
4,5	J/psi(2e) 2pi	3,8	0,26	\checkmark	5,4	0,20	\checkmark	6,2	0,16	\checkmark	3,8	0,26	\checkmark	20,0	0,048	\checkmark
	J/psi(2e) 2pi0	4,6	0,21	\checkmark	10,2	0,095	×	91	0,016	×	4,6	0,21	\checkmark	9,6	0,10	\checkmark
	J/psi(2mu) 2pi	3,9	0,25	\checkmark	5,1	0,19	\checkmark	4,0	0,24	\checkmark	3,5	0,27	\checkmark	16,6	0,058	\checkmark
	J/psi(2mu) 2pi0	3,6	0,27	×	7,6	0,13	×	30	0,032	×	4,0	0,24	×	7,6	0,13	\checkmark
	etac(2Kpi0) 2pi	351	0,0004	\checkmark	374	0,0008	\checkmark	629	0,0005	\checkmark	588	0,0003	<	8201	0,0002	\checkmark
	etac(2Kpi0) 2pi0	146	0,002	\checkmark	171	0,005	\checkmark	2464	0,001	\checkmark	142	0,002	\checkmark	624	0,001	\checkmark
	etac(KsKpi) 2pi	44	0,011	\checkmark	22,6	0,043	\checkmark	44	0,012	\checkmark	148	0,005	\checkmark	17726	0,001	\checkmark
55	etac(KsKpi) 2pi0	18,4	0,026	\checkmark	45	0,023	\checkmark	99	0,016	×	31	0,032	\checkmark	496	0,007	\checkmark
5,5	J/psi(2e) 2pi	3,8	0,26	\checkmark	6,8	0,16	\checkmark	5,0	0,19	✓	3,9	0,25	\checkmark	28,5	0,034	\checkmark
	J/psi(2e) 2pi0	4,6	0,21	\checkmark	9,3	0,10	\checkmark	21,7	0,045	×	4,7	0,21	\checkmark	11,7	0,082	\checkmark
	J/psi(2mu) 2pi	3,1	0,31	\checkmark	5,1	0,094	\checkmark	3,8	0,26	\checkmark	3,9	0,24	\checkmark	24,9	0,039	\checkmark
	J/psi(2mu) 2pi0	3,2	0,30	\checkmark	7,7	0,12	×	15,4	0,063	×	3,5	0,27	\checkmark	9,8	0,099	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms		I,0E+30 Full No FS No Emc Barrel No Disc DIRC STT only Tracking													
	detopt		Full			No FS		No	Emc Bai	rrel	N	o Disc Dl	RC	STT o	only Trac	king
E_CIII	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	4237	0,001	\checkmark	4666	0,001	✓	12217	0,001	✓	5595	0,001	<	36314	0,001	\checkmark
	etac(2Kpi0) 2pi0	2301	0,003	\checkmark	3690	0,003	\checkmark	141930	0,002	\checkmark	2529	0,002	\checkmark	6313	0,002	\checkmark
	etac(KsKpi) 2pi	453	0,43	\checkmark	430	0,45	\checkmark	525	0,18	✓	735	0,26	\checkmark	17922	0,012	\checkmark
15	etac(KsKpi) 2pi0	580	0,33	\checkmark	735	0,26	\checkmark	2205	0,088	×	542	0,36	\checkmark	2205	0,029	\checkmark
4,5	J/psi(2e) 2pi	76	2,6	\checkmark	107	2,0	\checkmark	123	1,6	\checkmark	75	2,6	\checkmark	399	0,48	\checkmark
L L L	J/psi(2e) 2pi0	91	2,1	\checkmark	204	0,95	x	1174	0,16	×	92	2,1	\checkmark	192	1,0	\checkmark
	J/psi(2mu) 2pi	78	2,5	\checkmark	102	1,9	\checkmark	81	2,4	\checkmark	71	2,7	\checkmark	333	0,58	\checkmark
	J/psi(2mu) 2pi0	72	2,7	×	152	1,3	x	605	0,32	×	80	2,4	×	152	1,3	\checkmark
	etac(2Kpi0) 2pi	704	0,004	\checkmark	754	0,008	\checkmark	1264	0,005	✓	1179	0,003	<	16435	0,002	\checkmark
	etac(2Kpi0) 2pi0	296	0,016	\checkmark	612	0,045	\checkmark	4990	0,014	\checkmark	289	0,017	\checkmark	1264	0,013	\checkmark
	etac(KsKpi) 2pi	367	0,11	\checkmark	453	0,43	\checkmark	408	0,12	✓	570	0,048	\checkmark	35638	0,006	\checkmark
55	etac(KsKpi) 2pi0	367	0,26	\checkmark	827	0,23	\checkmark	1225	0,16	×	612	0,32	✓	2756	0,070	\checkmark
5,5	J/psi(2e) 2pi	76	2,6	\checkmark	137	1,6	\checkmark	100	1,9	\checkmark	78	2,5	\checkmark	570	0,34	\checkmark
	J/psi(2e) 2pi0	92	2,1	\checkmark	187	1,0	\checkmark	434	0,44	×	93	2,1	\checkmark	235	0,82	\checkmark
	J/psi(2mu) 2pi	63	3,1	\checkmark	102	0,94	\checkmark	75	2,6	\checkmark	79	2,4	\checkmark	499	0,39	\checkmark
	J/psi(2mu) 2pi0	64	3,0	\checkmark	155	1,2	×	307	0,63	×	71	2,7	\checkmark	196	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

Frank Nerling

10nb	L/cms	1,0E+31														
E_cm	detopt	Full			No FS			No Emc Barrel			No Disc DIRC			STT only Tracking		
	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
4,5	etac(2Kpi0) 2pi	424	0,001	\checkmark	467	0,001	✓	1222	0,001	<	560	0,001	<	3631	0,001	<
	etac(2Kpi0) 2pi0	230	0,003	\checkmark	369	0,003	\checkmark	14193	0,002	\checkmark	253	0,002	✓	631	0,002	\checkmark
	etac(KsKpi) 2pi	45	0,43	✓	43	0,45	✓	53	0,18	✓	74	0,26	✓	1792	0,01	\checkmark
	etac(KsKpi) 2pi0	58	0,33	\checkmark	74	0,26	\checkmark	221	0,09	×	54	0,36	\checkmark	221	0,03	\checkmark
	J/psi(2e) 2pi	7,6	2,6	\checkmark	10,7	2,0	\checkmark	12,3	1,6	\checkmark	7,5	2,6	\checkmark	40	0,48	\checkmark
	J/psi(2e) 2pi0	9,1	2,1	\checkmark	20,4	0,95	×	117	0,16	×	9,2	2,1	\checkmark	19,2	1,0	\checkmark
	J/psi(2mu) 2pi	7,8	2,5	✓	10,2	1,9	\checkmark	8,1	2,4	\checkmark	7,1	2,7	✓	33	0,58	\checkmark
	J/psi(2mu) 2pi0	7,2	2,7	×	15,2	1,3	x	61	0,32	×	8,0	2,4	×	15,2	1,3	\checkmark
	etac(2Kpi0) 2pi	70	0,004	\checkmark	75	0,008	✓	126	0,005	✓	118	0,003	<	1644	0,002	\checkmark
	etac(2Kpi0) 2pi0	29,5	0,016	✓	61	0,045	\checkmark	499	0,014	✓	28,9	0,017	✓	126	0,013	\checkmark
5,5	etac(KsKpi) 2pi	37	0,11	\checkmark	45	0,43	\checkmark	41	0,12	✓	57	0,048	\checkmark	3564	0,006	\checkmark
	etac(KsKpi) 2pi0	37	0,26	✓	83	0,23	✓	123	0,16	×	61	0,32	✓	276	0,070	\checkmark
	J/psi(2e) 2pi	7,6	2,6	\checkmark	13,7	1,6	\checkmark	10,0	1,9	✓	7,8	2,5	✓	57	0,34	✓
	J/psi(2e) 2pi0	9,2	2,1	✓	18,6	1,0	\checkmark	43	0,44	×	9,3	2,1	✓	23,5	0,82	\checkmark
	J/psi(2mu) 2pi	6,3	3,1	\checkmark	10,2	0,94	✓	7,5	2,6	\checkmark	7,9	2,4	\checkmark	50	0,39	\checkmark
	J/psi(2mu) 2pi0	6,4	3,0	\checkmark	15,5	1,2	×	31	0,63	×	7,1	2,7	\checkmark	19,6	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

10nb	L/cms	1,0E+32														
E_cm	detopt	Full			No FS			No Emc Barrel			No Disc DIRC			STT only Tracking		
	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
	etac(2Kpi0) 2pi	42	0,001	<	47	0,001	✓	122	0,001	✓	56	0,001	<	363	0,001	~
	etac(2Kpi0) 2pi0	23,0	0,003	\checkmark	37	0,003	\checkmark	1419	0,002	\checkmark	25,3	0,002	✓	63	0,002	\checkmark
	etac(KsKpi) 2pi	4,5	0,43	\checkmark	4,3	0,45	\checkmark	5,2	0,18	✓	7,3	0,26	✓	179	0,01	\checkmark
15	etac(KsKpi) 2pi0	5,8	0,33	✓	7,3	0,26	\checkmark	22,0	0,09	×	5,4	0,36	✓	22,0	0,03	✓
4,5	J/psi(2e) 2pi	0,8	2,6	\checkmark	1,1	2,0	\checkmark	1,2	1,6	\checkmark	0,8	2,6	\checkmark	4,0	0,48	\checkmark
	J/psi(2e) 2pi0	0,9	2,1	\checkmark	2,0	0,95	×	11,7	0,16	×	0,9	2,1	\checkmark	1,9	1,0	✓
	J/psi(2mu) 2pi	0,8	2,5	\checkmark	1,0	1,9	\checkmark	0,8	2,4	\checkmark	0,7	2,7	\checkmark	3,3	0,58	✓
	J/psi(2mu) 2pi0	0,7	2,7	×	1,5	1,3	×	6,0	0,32	×	0,8	2,4	×	1,5	1,3	\checkmark
	etac(2Kpi0) 2pi	7,0	0,004	✓	7,5	0,008	✓	12,6	0,005	✓	11,8	0,003	✓	164	0,002	✓
	etac(2Kpi0) 2pi0	3,0	0,02	\checkmark	6,1	0,05	\checkmark	50	0,01	\checkmark	2,9	0,02	✓	12,6	0,01	\checkmark
	etac(KsKpi) 2pi	3,7	0,11	✓	4,5	0,43	\checkmark	4,1	0,12	✓	5,7	0,05	✓	356	0,01	\checkmark
5,5	etac(KsKpi) 2pi0	3,7	0,26	\checkmark	8,3	0,23	\checkmark	12,2	0,16	×	6,1	0,32	✓	27,6	0,07	\checkmark
	J/psi(2e) 2pi	0,8	2,6	\checkmark	1,4	1,6	\checkmark	1,0	1,9	\checkmark	0,8	2,5	\checkmark	5,7	0,34	✓
	J/psi(2e) 2pi0	0,9	2,1	✓	1,9	1,0	\checkmark	4,3	0,44	×	0,9	2,1	✓	2,3	0,82	✓
	J/psi(2mu) 2pi	0,6	3,1	\checkmark	1,0	0,94	\checkmark	0,8	2,6	\checkmark	0,8	2,4	\checkmark	5,0	0,39	\checkmark
	J/psi(2mu) 2pi0	0,6	3,0	\checkmark	1,5	1,2	×	3,1	0,63	×	0,7	2,7	\checkmark	2,0	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

10nb	L/cms	2,0E+32														
E_cm	detopt	Full			No FS			No Emc Barrel			No Disc DIRC			STT only Tracking		
	mode	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA	t [d]	S/B	Dal QA
4,5	etac(2Kpi0) 2pi	21,2	0,001	\checkmark	23,3	0,001	\checkmark	61	0,001	\checkmark	28,0	0,001	\checkmark	182	0,001	\checkmark
	etac(2Kpi0) 2pi0	11,5	0,003	\checkmark	18,5	0,003	\checkmark	710	0,002	\checkmark	12,6	0,002	\checkmark	32	0,002	\checkmark
	etac(KsKpi) 2pi	2,3	0,43	\checkmark	2,1	0,45	\checkmark	2,6	0,18	\checkmark	3,7	0,26	\checkmark	90	0,01	\checkmark
	etac(KsKpi) 2pi0	2,9	0,33	\checkmark	3,7	0,26	\checkmark	11,0	0,09	×	2,7	0,36	\checkmark	11,0	0,03	\checkmark
	J/psi(2e) 2pi	0,4	2,6	\checkmark	0,5	2,0	\checkmark	0,6	1,6	\checkmark	0,4	2,6	\checkmark	2,0	0,48	\checkmark
	J/psi(2e) 2pi0	0,5	2,1	\checkmark	1,0	0,95	×	5,9	0,16	×	0,5	2,1	\checkmark	1,0	1,0	\checkmark
	J/psi(2mu) 2pi	0,4	2,5	\checkmark	0,5	1,9	\checkmark	0,4	2,4	\checkmark	0,4	2,7	\checkmark	1,7	0,58	\checkmark
	J/psi(2mu) 2pi0	0,4	2,7	×	0,8	1,3	×	3,0	0,32	×	0,4	2,4	×	0,8	1,3	\checkmark
5,5	etac(2Kpi0) 2pi	3,5	0,004	~	3,8	0,008	<	6,3	0,005	<	5,9	0,003	\checkmark	82	0,002	<
	etac(2Kpi0) 2pi0	1,5	0,02	\checkmark	3,1	0,05	\checkmark	24,9	0,01	\checkmark	1,4	0,02	\checkmark	6,3	0,01	\checkmark
	etac(KsKpi) 2pi	1,8	0,11	\checkmark	2,3	0,43	\checkmark	2,0	0,12	\checkmark	2,9	0,05	\checkmark	178	0,01	\checkmark
	etac(KsKpi) 2pi0	1,8	0,26	\checkmark	4,1	0,23	\checkmark	6,1	0,16	×	3,1	0,32	\checkmark	13,8	0,07	\checkmark
	J/psi(2e) 2pi	0,4	2,6	\checkmark	0,7	1,6	\checkmark	0,5	1,9	\checkmark	0,4	2,5	\checkmark	2,9	0,34	\checkmark
	J/psi(2e) 2pi0	0,5	2,1	\checkmark	0,9	1,0	\checkmark	2,2	0,44	×	0,5	2,1	\checkmark	1,2	0,82	\checkmark
	J/psi(2mu) 2pi	0,3	3,1	\checkmark	0,5	0,94	\checkmark	0,4	2,6	\checkmark	0,4	2,4	\checkmark	2,5	0,39	\checkmark
	J/psi(2mu) 2pi0	0,3	3,0	\checkmark	0,8	1,2	×	1,5	0,63	×	0,4	2,7	\checkmark	1,0	0,99	\checkmark

Time QA (days) green < 30 yellow < 365 red >= 365 S/B QA green > 1 yellow > 0.1 red <= 0.1

- charged and neutral Z states \rightarrow same mass ? [ccuu,ccdd] vs. [ccud]
- why are all the Z states observed above threshold ? (contradicts interpretation as molecules and CUSPs)
- transitions of XYZ states ? $Y \rightarrow Z$, seen at BESIII (Y(4260) \rightarrow Z(3900) π^+) $Y \rightarrow X$, seen at BESIII (Y(4260) \rightarrow X(3872) γ) \rightarrow what about X \rightarrow Z transistions?

Z near DD threshold0+never observedZ near DD* threshold1+Z(3900)Z near D*D* threshold0+,1+,2+Z(4020)