Light Quark Mesons Physics Working Group Marc Pelizäus Ruhr-Universität Bochum

PANDA Collaboration Meeting Nov. 30 – Dec. 4, 2015 Vienna

The Light Quark Mesons PWG

- New structure since early 2014, three PWGs:
 - Charmonium PWG
 - Charmonium Exotics PWG
 - Light Quark Mesons [LQM] PWG (no charm, no baryons)
- Large overlap of interests and activities of the three groups
 - regular, joint meetings (Wed., 10:30 am)
- Manpower situation
 - Participation in the joint meetings is ranging between 5 and 10 people
 - Direct and better measure for LQM
 - 3 analysts involved during the scrutiny process in 2014
 - 1 commitment to pursue one study using full simulation in future

Involved People and Institutes

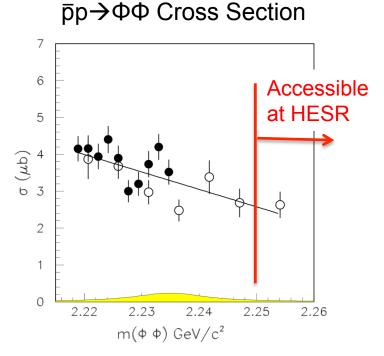
- Univ. Bochum
 - M. Albrecht, M. Pelizäus, T. Schröder
- HIM / GSI
 - K. Götzen, F. Nerling
- Univ. Mainz / HIM
 - Ch. Motzko

Light Meson Spectrum

Additional color-less states: Color-less $q\bar{q}$ states (q = u, d, s) Multipletts of $q\bar{q}$ mesons with same J^{PC} • Glueballs: gg, ggg • Hybrids: qqg Tetraquarks: (qq)(qq) 3000 3^{-+} 2500 m/MeV2000 $1^{-+} 0^{+-} 2^{+-}$ 1500 $q\bar{q} S$ 1^{+-} 0^{++} 1^{++} 2^{++} 3^{++} 4^{++} 3^{+-} $q\bar{q} P$ аā 1000 $q\bar{q} G$ $\hat{q}\bar{q}g?$ 0^{-} $-4^{--}2^{-+}4^{-+}$

J. J. Dudek, Phys. Rev. D84 (2011) 074023

C. Morningstar, M. Peardon, Phys. Rev. D60, 34509 (1999) C. Morningstar, M. Peardon, Phys. Rev. D56, 4043 (1997)


Light Mesons in pp Annihilation at PANDA

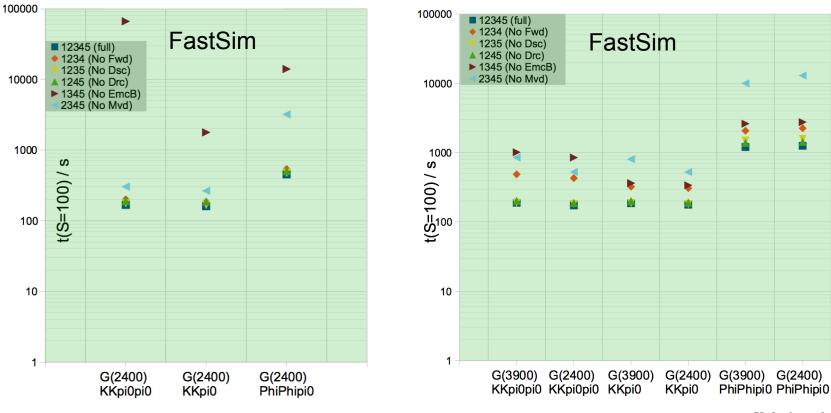
- Antiproton-proton annihilation
 - huge cross sections for light meson production: 100 nb ... 10 μb
 - gluon rich processes \rightarrow production of glueballs and hybrids
- Access in formation to
 - neutral resonances with m > 2.25 GeV/ c^2 and
 - non-exotic quantum numbers
- Access in production to all resonances with
 - at least one recoil meson and
 - variable center-of-mass energy (\rightarrow tunable phasespace)
- Many broad and overlapping states
 - requires (often) partial wave analysis techniques to identify resonances

Recent Achievements

Physics Performance Report (2009)

- One channel related to light meson spectroscopy p̄p → ΦΦ [K. Goetzen]
- Study of narrow f_J(2230) previously reported by MARK III and BES II
 - outdated, since this state is excluded by Babar and BES III with superior statistics
 - not accessible in formation at HESR
- Still to do: Scan above 2.25 GeV
 - Jetset (1998): cross section >100x larger than expected from OZI rule → gluonic component?
 - broad f₂(2300) and f₂(2330) glueball candidates
- Need an update on this topic

Jetset, Phys. Rev. D 57, 5370 (1998)

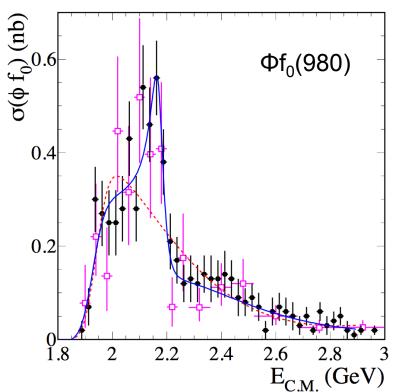

Glueball Studies

- Studies performed for the scrutiny report
 - focus on feasibility and performance for 6 different detector options
 - carried out in fast simulation
- Study of glueball production in $\overline{p}p \rightarrow K^+K^-\pi^0$, $K^+K^-\pi^0\pi^0$ and $\Phi\Phi\pi^0$
 - assuming cross section of 10 nb (including decays to final state)
 - background cross sections 50 to 80 mb
- "Light" glueball m = 2400 MeV/ c^2 (could be 2⁺⁺ or 0⁻⁺)
 - E_{CMS} = 2.57 GeV and 5.47 GeV
 - could be broad, study final states w/o intermediate resonances
- "Heavy" glueball m = 3900 MeV/c²
 - E_{CMS} = 5.47 GeV
 - could be narrow, assume $\Gamma = 10 \text{ MeV}$
 - search for narrow signal in production

Glueball Studies

Light glueball at E_{CMS} = 2.57 GeV

Light / heavy glueball E_{CMS} = 5.47 GeV


[Malte Albrecht]

-

MSV (10³¹ cm⁻²s⁻¹): 800 ... 8000 / d reconstructed signal events depending on channel

- Y(2175)→Φf₀(980) observed in ISR events e⁺e⁻ → γ_{ISR}K⁺K⁻π⁺π⁻
 m ~ 2175 MeV/c²; Γ~ 60 MeV
- Confirmed by BES III in J/ψ→Y(2175)η [2014]
- Similar: Y(4260) → J/ψ f₀(980) also observed in ISR events
- Is Y(2175) a light analogue to the Y(4260)?

If yes: Are there other analogies of the X, Y, Z states in the light meson sector?

BaBar, Phys.Rev.D74, 091103 (2006)

Y(2175) Studies

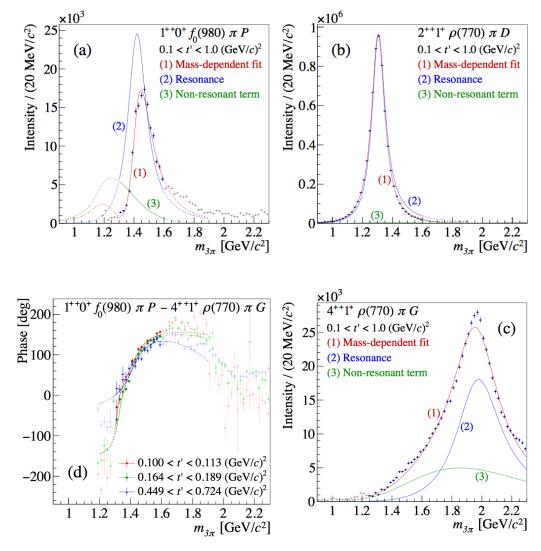
- $\bar{p}p \rightarrow Y(2175)\pi\pi, Y(2175)\pi^0$ at E_{CMS}= 3 GeV
 - Y(2175) reconstructed in $\Phi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ and $\Phi\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$
 - assumed signal cross section: 100 nb
 - background cross section: 70 mb

Beam-time to record 1000 reconstructed events in the $\Phi\pi^+\pi^-\pi^0$ final state

	$f_{BR} = 5 \%$	$f_{BR} = 10 \%$	$f_{BR} = 30 \%$
L = $2 \cdot 10^{30}$	99.5 d	24.9 d	2.8 d
L = $2 \cdot 10^{31}$	9.95 d	(2.49 d)	0.28 h
L = $2 \cdot 10^{32}$	0.995 d	0.249 d	0.028 h

[Ch. Motzko]

FastSim, full detector setup


MSV (10³¹ cm-²s⁻¹): 200 / d reconstructed signal events

Future Plans

Recent Observation of $a_1(1420)$ at Compass

- Compass: Observation of a new axial-vector meson in diffractive 3π dissociation (m~1414 MeV and Γ~153 MeV)
 - 46 x 10⁶ events analyzed
 - 88 waves fitted
- Iso-spin partner of f₁(1420)?
- a₁(1420) and f₁(1420) could be KKπ molecules
- f₁(1420) observed in
 p̄p → K⁰K⁻π⁺π⁺π⁻

PANDA (MSV): 800 M / d produced 4π events

Compass, Phys. Rev. Lett. 115, 082001 (2015)

Two Years Early Physics Proposal

 Scutiny Group merged proposals made by the various PWGs to a two year early physics proposal

Light meson spectroscopy:

- 30 days at 1.64 GeV/c
 - spectroscopy for states below 2.3 GeV/ c^2
 - unprecedented data samples
 - can address $a_1(1420)$
- 7 days at 3.75 GeV/c
 - investigate Y(2175) and $\Phi\Phi$ resonances

Future Plans

- Full simulation studies
 - − Y(2175) → Φππ in $\bar{p}p$ → Y(2175)ππ, Y(2175)π⁰
 - − light glueball G→ΦΦ, K \overline{K} , K $\overline{K}\pi$ in $\overline{p}p \rightarrow G\pi^0$, Gη, Gππ
 - − energy scan $\overline{p}p \rightarrow ΦΦ$
 - − $a_1(1420) \rightarrow 3\pi$ in $\bar{p}p \rightarrow 4\pi$, 5π

https://panda-wiki.gsi.de/foswiki/bin/view/PhysicsCmt/PhysicsAnalysisActivities

- Include realistic backgrounds
- Address feasibility of partial wave analyses

increasing

complexity

Summary

- Light meson spectroscopy at PANDA
 - large production cross sections
 - gluon-rich processes (glueballs, hybrids)
- Plans for feasibility studies
 - full simulation with realistic background estimations and
 - addressing partial wave analyses
 - prioritized list of channels available (more topics than people)
- Limited manpower
 - like in Charmonium / Charmonium-exotics PWGs
 - combine efforts as much as possible (e.g. data production, PWA)
 - \rightarrow New people are always welcome to participate!