OPEN-CHARM REPORT

Status & perspectives

- Who is the open-charm WG?
- Why open-charm with PANDA?
- Key performance studies
- Looking ahead

Johan Messchendorp (KVI-CART/RuG), PANDA CM December 2015 (SMI, Vienna)

WHO IS OPEN-CHARM? a.k.a. heavy-light + electroweak

WHO IS OPEN-CHARM?

a.k.a. heavy-light + electroweak

- Participants
 - FZJ
 - KVI-CART
 - GSI/FAIR
 - Mainz
 - Giessen
 - U. of Muenster
 - TAG (Sinead Ryan et al.)

WHO IS OPEN-CHARM?

a.k.a. heavy-light + electroweak

- Participants
 - FZJ
 - KVI-CART
 - GSI/FAIR
 - Mainz
 - Giessen
 - U. of Muenster
 - TAG (Sinead Ryan et al.)

Convenors

- Johan Messchendorp (heavy-light)
- Lars Schmitt (electroweak)

WHO IS OPEN-CHARM?

a.k.a. heavy-light + electroweak

Participants

- FZJ
- KVI-CART
- GSI/FAIR
- Mainz
- Giessen
- U. of Muenster
- TAG (Sinead Ryan et al.)

Convenors

- Johan Messchendorp (heavy-light)
- Lars Schmitt (electroweak)

Collaborative tools

- Physics sessions together with charmonium/exotics/light quark/...
- Seevogh meetings
- Announcements: sign up on "open-charm" on forum.gsi.de
- Documentation: see <u>panda-wiki.gsi.de</u>

OPEN-CHARM BINDS!

QCD physics (strong interaction)

 $Q\bar{q}/Qqq/\dots$

search "new" physics
(via weak interaction)

OPEN-CHARM BINDS!

QCD physics (strong interaction)

 $Q\bar{q}/Qqq/\dots$

search "new" physics
(via weak interaction)

Precision spectroscopy

- sub-MeV mass and width determination
- (near threshold) associated production

Precision spectroscopy

- sub-MeV mass and width determination
- (near threshold) associated production
- Energy range & p-pbar probe
 - charm baryons production above ~4.5 GeV
 - sensitivity to D-waves in open-charm
 - complementary to e+e- machines (e.g. BESIII)

Precision spectroscopy

- sub-MeV mass and width determination
- (near threshold) associated production
- Energy range & p-pbar probe
 - charm baryons production above ~4.5 GeV
 - sensitivity to D-waves in open-charm
 - complementary to e+e- machines (e.g. BESIII)

Vertex, track, and photon detection

- allows for a study of lepton/photon-rich channels
- complementary to LHCb

PANDA'S CHALLENGES

Open-charm production in p-pbar?

- predicted cross sections vary from nano to micro barns
- interesting physics in production mechanisms?
- Open-charm with p-pbar far from trivial
 - *huge* background to cope with cross section ...
 - ... in particular for BSM aspects!
 - requires "complete" detector and over-redundancy
 - requires state-of-the-art reconstruction and analysis tools

Competition is fierce!

- LHCb & BelleII upgrades
- BESIII clean environment
- GlueX, J-Parc charmed baryons

BENCHMARK CHANNELS

Physics	Channel (p+pbar —>)	Remark
open-charm cross sections	$D_{(s)}\bar{D}_{(s)}, Y_c\bar{Y}_c$	optimization reconstruction and analysis algorithms
nature of excited open-charm states	$\bar{D}_s D_{sJ}(2317, 2460, 2536)$	lineshape determination, 1
ChPT: soft-pion couplings	$\bar{\Lambda}_c \Lambda_c(2595) (\to \pi \Sigma_c)$	precision for coupling constants?
e.m. structure of heavy baryons	$ar{\Lambda}_c \Sigma_c (o \Lambda_c \gamma)$	multi-pole analysis?
New Physics	$\bar{D}_0 D_0 (\to \gamma \gamma)$ $\bar{D}_0 D_0 (\to \pi/\rho + \ell^+ \ell^-)$	sensitivity achievable?
form factors in weak decays	$D_s^- D_s^+ (\to \phi/\eta/\eta' e\nu)$ $D_s \to e\mu, \bar{\Lambda}_c \Lambda_c (\to \Lambda e\nu)$	precision w.r.t FF and impact CKM?

BENCHMARK CHANNELS

Physics	Channel (p+pbar —>)	Remark
open-charm cross sections	$D_{(s)}\bar{D}_{(s)}, Y_c\bar{Y}_c$	optimization reconstruction and analysis algorithms
nature of excited open-charm states	$\bar{D}_s D_{sJ}(2317, 2460, 2536)$	lineshape determination, 1
ChPT: soft-pion couplings	$\bar{\Lambda}_c \Lambda_c(2595) (\to \pi \Sigma_c)$	precision for coupling constants?
e.m. structure of heavy baryons	$ar{\Lambda}_c \Sigma_c (o \Lambda_c \gamma)$	multi-pole analysis?
New Physics	$\begin{split} \bar{D}_0 D_0 (\to \gamma \gamma) \\ \bar{D}_0 D_0 (\to \pi/\rho + \ell^+ \ell^-) \end{split}$	sensitivity achievable?
form factors in weak decays	$D_s^- D_s^+ (\to \phi/\eta/\eta' e\nu)$ $D_s \to e\mu, \bar{\Lambda}_c \Lambda_c (\to \Lambda e\nu)$	precision w.r.t FF and impact CKM?

BENCHMARK CHANNELS

Physics	Channel (p+pbar —>)	Remark
open-charm cross sections	$D_{(s)}\bar{D}_{(s)}, Y_c\bar{Y}_c$	optimization reconstruction and analysis algorithms
nature of excited open-charm states	$\bar{D}_s D_{sJ}(2317, 2460, 2536)$	lineshape determination, 1
ChPT: soft-pion couplings	$\bar{\Lambda}_c \Lambda_c(2595) (\to \pi \Sigma_c)$	precision for coupling constants?
e.m. structure of heavy baryons	$ar{\Lambda}_c \Sigma_c (o \Lambda_c \gamma)$	multi-pole analysis?
New Physics	$\begin{split} \bar{D}_0 D_0 (\to \gamma \gamma) \\ \bar{D}_0 D_0 (\to \pi/\rho + \ell^+ \ell^-) \end{split}$	sensitivity achievable?
form factors in weak decays	$D_s^- D_s^+ (\to \phi/\eta/\eta' e\nu)$ $D_s \to e\mu, \bar{\Lambda}_c \Lambda_c (\to \Lambda e\nu)$	precision w.r.t FF and impact CKM?

Input from you is *more* than welcome!

$\bar{p}p \rightarrow \bar{D}D$ **Production**

OPEN-CHARM PRODUCTION, THEORY

• Non-resonant production, Haidenbauer&Krein, PRD89, 114003 (2014)

OPEN-CHARM PRODUCTION

• $\bar{p}p \to \bar{D}^0 D^0 \to K^- \pi^+ K^+ \pi^- / K \pi + X$

- •
- Alexandros Apostolou (KVI/FZJ) analysis ongoing, single+double tag studies
- benchmark results presented internally

$\bar{p}p \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+K^+\pi^-\pi^-$

- Andreas Herten (FZJ)
- thesis finished, memo past referee stage
- results presented internally and at conferences

• $\bar{p}p \to \Lambda_c^+ \Lambda_c^- \to \cdots$

- Darius Deermann (FZJ), Solmaz Vejdani (KVI), Simone Bianco (Bonn)
- synergy with the hyperon working group

OPEN-CHARM PRODUCTION

• $\bar{p}p \to \bar{D}^0 D^0 \to K^- \pi^+ K^+ \pi^- / K \pi + X$

- Alexandros Apostolou (KVI/FZJ) analysis ongoing, single+double tag studies
- benchmark results presented internally

$pp \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+K^+\pi^-\pi^-$

- Andreas Herten (FZJ)
- thesis finished, memo past referee stage results presented internally and at conferences

$\bar{p}p \to \Lambda_c^+ \Lambda_c^- \to \cdots$

- Darius Deermann (FZJ), Solmaz Vejdani (KVI), Simone Bianco (Bonn)
- synergy with the hyperon working group

$\bar{p}p \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+K^+\pi^-\pi^-$

Andreas Herten (FZJ)

Reconstruction Scheme

- p-beam 6.5 GeV/c (just above threshold)
- Full simulation with realistic decay model of D mesons
- Detailed performance study on reconstruction tools on physics channel
- At highest luminosity and 100 nb: 1300/25 single/double D's/hour
- DPM: *inclusive*: S/B=1/10 feasible; *exclusive*: >10⁸ background suppression
- Release note ready and refereed!

- p-beam 6.5 GeV/c (just above threshold)
- Full simulation with realistic decay model of D mesons
- Detailed performance study on reconstruction tools on physics channel
- At highest luminosity and 100 nb: 1300/25 single/double D's/hour
- DPM: *inclusive*: S/B=1/10 feasible; *exclusive*: >10⁸ background suppression
- Release note ready and refereed!

OPEN-CHARM SPECTROSCOPY

Graham Moir, et al. (Hadron Spectrum Collaboration), arXiv:1312.1361

OPEN-CHARM SPECTROSCOPY

Graham Moir, et al. (Hadron Spectrum Collaboration), arXiv:1312.1361

OPEN-CHARM SPECTROSCOPY

D_{so}*(2317) WIDTH

• Nature of D_{s0}*(2317)

- molecule/tetraquark/...?
- deficiency quark model?
- role chiral symmetry?

Model sensitivity

- line-shape —> nature
- *width:* large variations 5-200 keV

• Opportunity

determine *width* by p+pbar scan in associate D_S production

Challenge

- uncertainty in prod. cross section
- can we reach sufficient stat. sign.?
- how far can we suppress the backgrd?
- can we reach enough sensitivity?

D_{s0}*(2317) world average (PDG)

- Mass: 2317.8 **± 0.6** MeV/c²
- Width: < 3.8 MeV/c²

D_{so}*(2317) WIDTH

• **Nature of D**_{s0}*(2317)

- molecule/tetraquark/...?
- deficiency quark model?
- role chiral symmetry?

Model sensitivity

- line-shape —> nature
- width: large variations 5-200 keV

• Opportunity

determine *width* by p+pbar scan in associate D_s production

Challenge

- uncertainty in prod. cross section
- can we reach sufficient stat. sign.?
- how far can we suppress the backgrd?
- can we reach enough sensitivity?

Momentum spread: $\delta p/p_0 = 10^{-4}$ Absolute positioning: $\delta p_0/p_0 = 10^{-4}$ Relative positioning: $\delta \Delta p/\Delta p = 10^{-5}$

D_{SO}*(2317) STUDIES ELISABETTA PRENCIPE (FZJ)

Collaboration with theory (Hanhart)

- updates in the excitation function
- role of interferences

Full simulation

- focus on recoil-mass study and phi->KK
- realistic decay model for Ds->KKpi
- background via DPM
- exploit MVA for background suppression
- signal yield obtained via combined fit

Preliminary results

- **DPM** backgrd suppr. of *at least* 4.5x10⁷
- ... with signal efficiency of 3.2% (production rate: 864 evts/day/nb@HR)
- memo internally discussed

Future items

- determination of background PDFs
- systematic sensitivity studies
- large scale simulations required
- towards publication in 2016

OPEN-CHARM: WEAK DECAYS

OPEN-CHARM: WEAK DECAYS

•
$$\bar{p}p \to D_s^- D_s^+ \to KK\pi/3\pi + \eta e^+ \nu_e$$

- Lu Cao (FZJ)
- Semi-leptonic Ds decay: weak meets strong physics!
- Thesis/memo in progress

•
$$\bar{p}p \to D^0 \bar{D}^0 \to (\gamma \gamma) + (K\pi/K2\pi/K3\pi)$$

- Donghee Kang (Mainz)
- Search for enhancement c—>ug transition (BSM)
- Internal note available on doc-server

$$\bar{p}p \to D^0 \bar{D}^0 \to (K_S \pi^+ \pi^-)(K^+ \pi^-)$$

- Andreas Pitka (Giessen) Study decay time differences in D0/D0bar decays Time resolution of 612 fs achieved
- Continuation (background studies etc.)?

OPEN-CHARM: WEAK DECAYS

• $\bar{p}p \rightarrow D_s^- D_s^+ \rightarrow KK\pi/3\pi + \eta e^+ \nu_e$

- Lu Cao (FZJ)
 Somi loptonic De docou: med
- Semi-leptonic Ds decay: *weak* meets *strong* physics!
- Thesis/memo in progress

$\bar{p}p \rightarrow D^0 \bar{D}^0 \rightarrow (\gamma \gamma) + (K\pi/K2\pi/K3\pi)$

Donghee Kang (Mainz)
 Search for enhancement c—>ug transition (BSM)

• Internal note available on doc-server

$\bar{p}p \to D^0 \bar{D}^0 \to (K_S \pi^+ \pi^-)(K^+ \pi^-)$

- Andreas Pitka (Giessen)
- Study decay time differences in D0/D0bar decays
- Time resolution of 612 fs achieved
- Continuation (background studies etc.)?

Penguin

D

SEMI-LEPTONIC FORM FACTORS LU CAO (FZJ)

SEMI-LEPTONIC FORM FACTORS LU CAO (FZJ)

- complete reconstr. of two tags
- realistic decay model for Ds->KKpi
- full reconstr. of e+ and eta
- vertex fits and mass constraints
- studies at three beam momenta 7.3/7.7/8.0 GeV/c

SEMI-LEPTONIC FORM FACTORS LU CAO (FZJ)

- complete reconstr. of two tags
- realistic decay model for Ds->KKpi
- full reconstr. of e+ and eta
- vertex fits and mass constraints
- studies at three beam momenta 7.3/7.7/8.0 GeV/c

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

$$N_{sig} = L_{int} \times \sigma_{DD} \times \Sigma Br_{D} \times \varepsilon ff \qquad L_{int} = 2 \text{ fb}^{-1} (\text{t} = 120 \text{ days})$$

$$N_{Bkg}^{DPM} = L_{int} \times \sigma_{\pi^{0}} \times \varepsilon ff \qquad Br(D^{0} \rightarrow \gamma \gamma) = 1.0 \times 10^{-6}$$

$$N_{Bkg}^{D \rightarrow 2\pi^{0}} = L_{int} \times \sigma_{DD} \times \Sigma Br_{D} \times \varepsilon ff \qquad \sigma_{DD} = 100 \text{ nb}$$

Mode : $E_{CM} = 3.77 \text{ GeV}$	Efficiency	$N_{expected}$	comments
Signal			
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^-$	14.85%	61.5	
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^- \pi^0$	5.48%	22.7	
$D^0 \bar{D}^0 \rightarrow \gamma \gamma K^+ \pi^- \pi^- \pi^+$	1.31%	5.5	
DPM background			
$p\bar{p} \rightarrow \pi^0 \pi^0 \pi^+ \pi^-$	$< 2.03 \times 10^{-8} (2 \text{ events})$	$< 3.1 \times 10^4$	100 M events simulated
$p\bar{p} \rightarrow \pi^0 \pi^0 \pi^+ \pi^- \pi^0$	$< 4.06 \times 10^{-8}$ (4 events)	$< 1.1 \times 10^5$	(remaining event)
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^+$	$< 1.00 \times 10^{-8} (0 \text{ events})$	$<9.3\times10^4$	
Open charm background			
$D^0 \bar{D}^0 \rightarrow \pi^0 \pi^0 K^+ \pi^-$	$5.1 imes 10^{-4}$	179.4	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^0$	$6.6 imes 10^{-4}$	230.6	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^- \pi^+$	5.2×10^{-5}	18.1	

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

$$N_{sig} = L_{int} \times \sigma_{DD} \times \Sigma Br_{D} \times \varepsilon ff \qquad L_{int} = 2 \text{ fb}^{-1} \text{ (t = 120 days)}$$

$$N_{Bkg}^{DPM} = L_{int} \times \sigma_{\pi^{0}} \times \varepsilon ff \qquad Br(D^{0} \rightarrow \gamma \gamma) = 1.0 \times 10^{-6}$$

$$N_{Bkg}^{D \rightarrow 2\pi^{0}} = L_{int} \times \sigma_{DD} \times \Sigma Br_{D} \times \varepsilon ff \qquad \sigma_{DD} = 100 \text{ nb}$$

Mode : $E_{CM} = 3.77 \text{ GeV}$	Efficiency	$N_{expected}$	comments
Signal			
$D^0 D^0 \to \gamma \gamma K^+ \pi^-$	14.85%	61.5	signal
$D^0 D^0 \to \gamma \gamma K^+ \pi^- \pi^0$	5.48%	22.7	
$D^0 D^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+$	1.31%	5.5	
DPM background			
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^-$	$< 2.03 \times 10^{-8} (2 \text{ events})$	$< 3.1 imes 10^4$	100 M events simulated
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^0$	$< 4.06 \times 10^{-8} (4 \text{ events})$	$< 1.1 imes 10^5$	(remaining event)
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^+$	$< 1.00 \times 10^{-8} (0 \text{ events})$	$<9.3\times10^4$	
Open charm background			
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^-$	5.1×10^{-4}	179.4	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^0$	6.6×10^{-4}	230.6	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^- \pi^+$	5.2×10^{-5}	18.1	

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

$$N_{sig} = L_{int} \times \sigma_{DD} \times \Sigma Br_D \times \varepsilon ff \qquad L_{int} = 2 \text{ fb}^{-1} \text{ (t = 120 days)}$$
$$N_{Bkg}^{DPM} = L_{int} \times \sigma_{\pi^0} \times \varepsilon ff \qquad Br(D^0 \to \gamma \gamma) = 1.0 \times 10^{-6}$$
$$N_{Bkg}^{D \to 2\pi^0} = L_{int} \times \sigma_{DD} \times \Sigma Br_D \times \varepsilon ff \qquad \sigma_{DD} = 100 \text{ nb}$$

Mode : $E_{CM} = 3.77 \text{ GeV}$	Efficiency	$N_{expected}$	comments
Signal $D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^-$ $D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^- \pi^0$ $D^0 \bar{D}^0 \to K^+ \pi^- \pi^-$	14.85% 5.48%	$61.5 \\ 22.7 \\ 5.5$	signal
$D^{0}D^{0} \rightarrow \gamma\gamma K^{+}\pi^{-}\pi^{-}\pi^{+}$ DPM background $p\bar{p} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{-}$ $p\bar{p} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{0}$ $p\bar{p} \rightarrow \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{+}$	$< 2.03 \times 10^{-8} (2 \text{ events})$ $< 4.06 \times 10^{-8} (4 \text{ events})$ $< 1.00 \times 10^{-8} (0 \text{ events})$	5.5 $< 3.1 \times 10^4$ $< 1.1 \times 10^5$ $< 0.3 \times 10^4$	100 M events simulated (remaining event)
$\begin{array}{c} pp & 7\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\\ \text{Open charm background}\\ D^{0}\bar{D}^{0} \rightarrow \pi^{0}\pi^{0}K^{+}\pi^{-}\\ D^{0}\bar{D}^{0} \rightarrow \pi^{0}\pi^{0}K^{+}\pi^{-}\pi^{0}\\ D^{0}\bar{D}^{0} \rightarrow \pi^{0}\pi^{0}K^{+}\pi^{-}\pi^{-}\pi^{+}\end{array}$	5.1×10^{-4} 6.6×10^{-4} 5.2×10^{-5}	179.4 230.6 18.1	bckgrd

Full simulation

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

Preliminary results

- promising, but ...
- additional backgrd suppr. needed
- analysis note available

• Future items

- additional cuts, MVA?
- other D tags, DD*, $D^0 \rightarrow \gamma \mu^+ \mu^-$
- continuation of Donghee's work?

• Studies so far show ...

- In first instance, it is all about *statistical significance*
- ... reducing background yield
- ... keeping high efficiencies
- ... even for the bread-and-butter open-charm studies
- Ambition to get results published

• Studies so far show ...

- In first instance, it is all about *statistical significance*
- ... reducing background yield
- ... keeping high efficiencies
- ... even for the bread-and-butter open-charm studies
- Ambition to get results published

Reconstruction and analysis tools

- Getting in the right shape
- Always plenty of room for improvements
- Cross fertilisation between physics/software groups

• Studies so far show ...

- In first instance, it is all about *statistical significance*
- ... reducing background yield
- ... keeping high efficiencies
- ... even for the bread-and-butter open-charm studies
- Ambition to get results published

Reconstruction and analysis tools

- Getting in the right shape
- Always plenty of room for improvements
- Cross fertilisation between physics/software groups

More and more data

- Huge amounts of background data required
- Storage limitations reached
- Central organisation of data production

• Studies so far show ...

- In first instance, it is all about *statistical significance*
- ... reducing background yield
- ... keeping high efficiencies
- ... even for the bread-and-butter open-charm studies
- Ambition to get results published

Reconstruction and analysis tools

- Getting in the right shape
- Always plenty of room for improvements
- Cross fertilisation between physics/software groups

More and more data

- Huge amounts of background data required
- Storage limitations reached
- Central organisation of data production

Less and less human resources

- Critical mass?
- Funding limitations, career changes, ...

OPEN-CHARM "GOODIES"

Hadrons with narrow widths/long lifetimes

- ideal experimental signatures
- perfect probes to study weak and strong forces
- well suited for PANDA precision ambitions

Hydrogen-like system

- close to heavy-quark symmetry (HQS)
- flavour (mass) and spin independent strong interaction
- "tethered" constituent light quarks

• Theoretically controllable (QCD based)

- HQS: heavy-quark effective theory and expansions
- lattice QCD: model independent and moving forward!
- b-sector: possibly precise;
- c-sector: systematic *probe* of non-perturbative effects!

Full simulation

- goal: BF sensitivity of at least 10⁻⁶
- exclusive reconstruction of 3 modes
- background via DPM, FTF, and EvtGen (excl. studies)
- study at Ecm=3.77 and 5.5 GeV

Preliminary results

- promising, but ...
- additional backgrd suppr. needed
- analysis note available

• Future items

- additional cuts, MVA?
- other D tags, DD*, $D^0 \to \gamma \mu^+ \mu^-$
- continuation of Donghee's work?

