CHARMONIUM PHYSICS WORKING GROUP

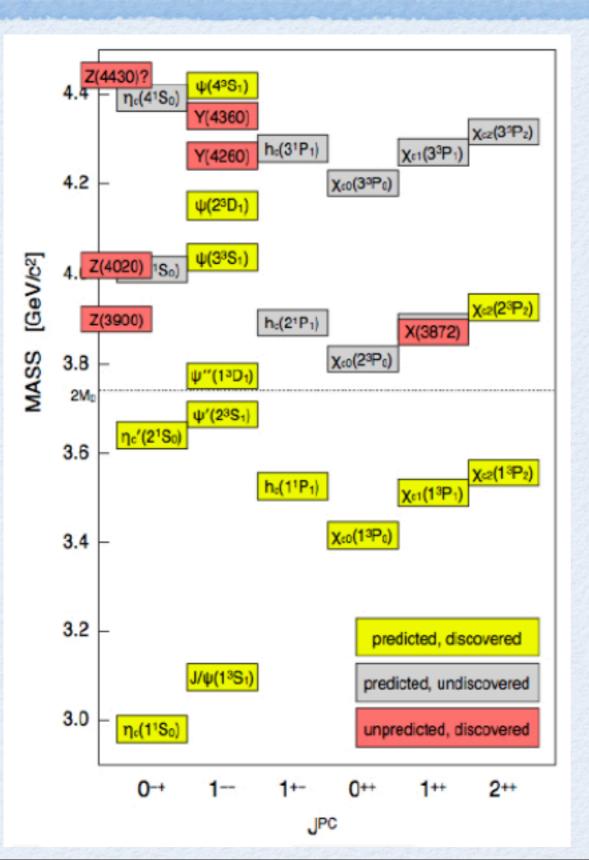
Elisa Fioravanti INFN Ferrara

PANDA Collaboration Meeting, Nov 30 - Dec 04 2015, Vienna

Charmonium PWG

* New structure since 2014, three Physics Working Groups:

- Charmonium
- Charmonium-like Exotics
- Light Quark Mesons


* Large overlap of interests and activities of the three groups

• Regular joint meetings (Wed. 10.30 am)

* Manpower situation:

- Partecipation in the joint meetings is ranging between 5 and 10 people
- 3 analysts involved during the scrutiny process in 2014
- At present 1 active physics analysis

Charmonium spectrum

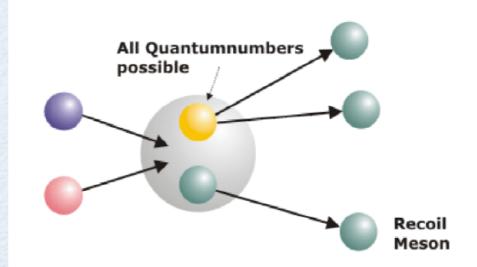
*****Below the DD threshold

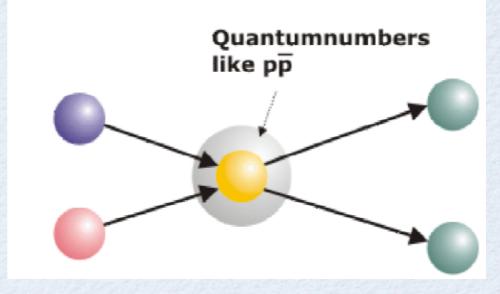
- All states observed
- Precision measurements mandatory:
 e.g. branching fractions, masses and widths

*****Above the DD threshold

- Many unexpected states
- Properties not in agreement with predictions \rightarrow exotic charmonium

Charmonium at PANDA

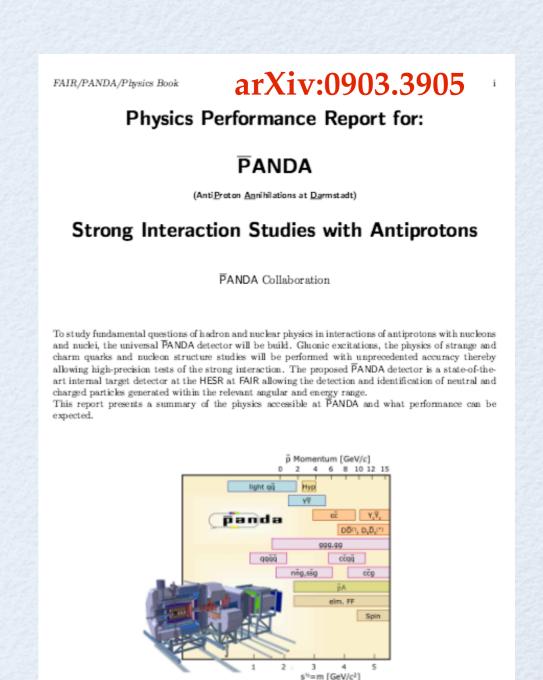

Production: all states with exotic and nonexotic quantum numbers accessible with a recoil


- high discovery potential

Formation: all states with non-exotic quantum numbers assessible

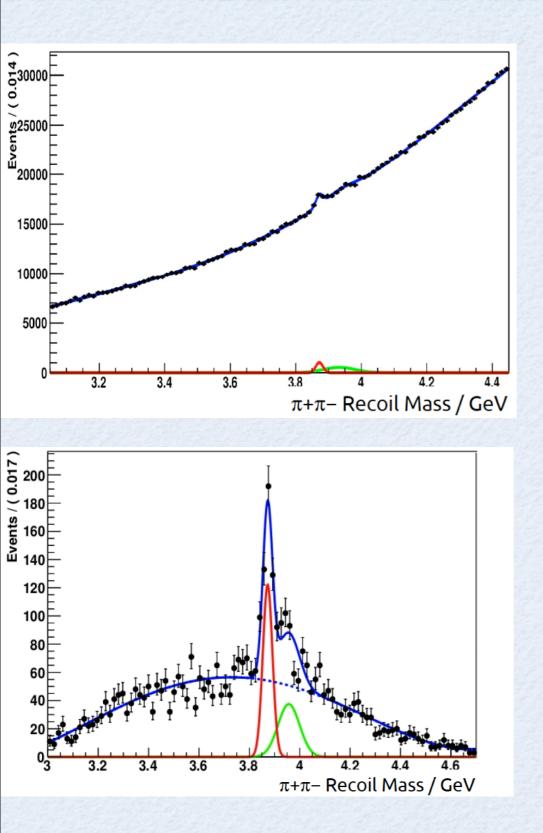
- not only limited to 1⁻⁻ as e⁺e⁻ colliders

- precision physics of known states


Energy scan: precise measurement of masses and widths of resonances: - only dependent on beam momentum resolution

→ Unique at PANDA

PANDA Physics Performance Report


Several charmonium channels were analyzed and published in the PANDA Physics Book using the old analysis framework:

- $p\overline{p} \rightarrow J/\psi\eta \rightarrow e^+e^-\gamma\gamma$ (Torsten Schröder)
- $p\bar{p} \rightarrow h_c \rightarrow \eta_c \gamma$ with $\eta_c \rightarrow \gamma \gamma$ or $\eta_c \rightarrow \phi \phi$ (Dima Melnychuk)
- $pp \rightarrow \chi_{c12} \gamma \rightarrow J/\psi \gamma \gamma$ (E. Fioravanti)
- $p\bar{p} \rightarrow \chi_{c12} \rightarrow J/\psi \gamma$ (I. Garzia)

Detailed and dedicated PandaRoot simulation studies with a realistic detector description are needed

Prospects for h_c' at PANDA

arXiv:1311.7597; CHARM 2013 Proceedings; M. Galuska, S. Lange, E. Prencipe, S. Reiter, S. Spataro arXiv:1410.5201; ICHEP 2014 Proceedings; E. Prencipe S. Reiter - Bachelor Thesis (2013)

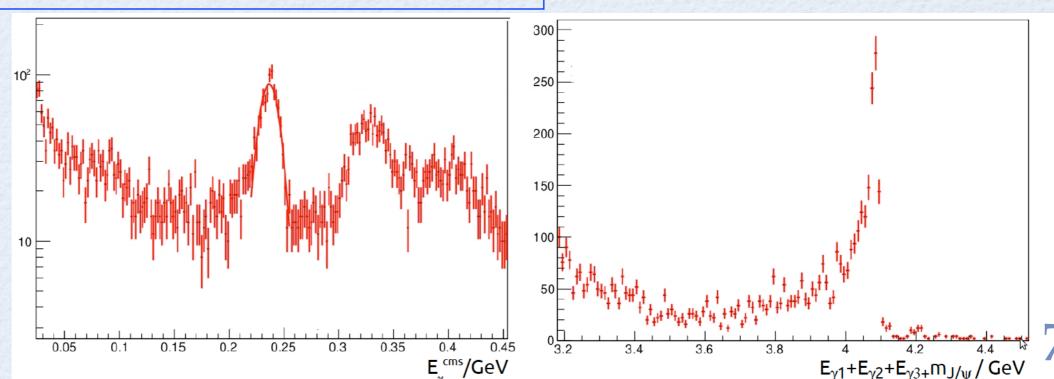
- $p\overline{p} \rightarrow (\pi^+\pi^-)_{recoil} h_c'$ with $h_c' \rightarrow D^0 \overline{D}^{0*}$; $D^0 \rightarrow K^-\pi^+$; $\overline{D}^{0*} \rightarrow$ anything antiproton beam of 15 GeV/c

- PandaRoot

- Signal efficiency: 8.3%
- Background efficiency: 1.6 x10⁻⁵

- The signal cross section of 4.5 nb is the requirement to achieve $S/\sqrt{(S+B)} \ge 10$ in 6 weeks of data taking with a duty factor of 50%.

- 3.9 x 10⁴ h_c' per day produced at PANDA in HESR high luminosity mode.

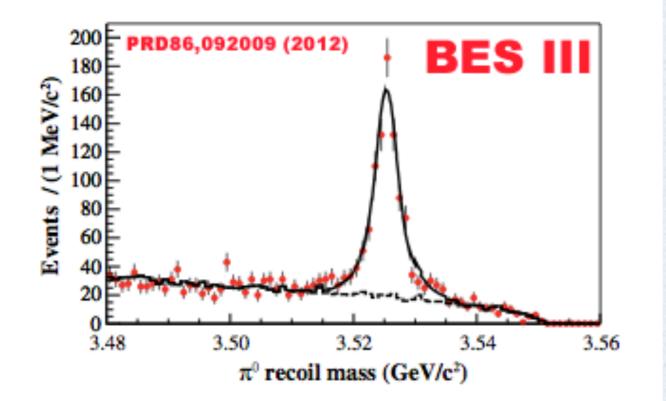

Prospects for ³F₄ at PANDA

$1^{3}F_{4}$	$1^{3}D_{3}$	χ_{c2}	J/ψ
$J^{PC} = 4^{++}$	$J^{PC} = 3^{}$	$J^{PC} = 2^{++}$	$J^{PC} = 1^{}$
$4095 { m MeV}$	$3849~{\rm MeV}$	$3556 { m ~MeV}$	$3097 { m ~MeV}$
$\Gamma = 8.3 \text{ MeV}$	$\Gamma = 0.5 \text{ MeV}$	$\Gamma=2.0 \text{ MeV}$	$\Gamma = 0.3 \text{ MeV}$
$E_{\gamma} = 246 \text{ MeV}$	$E_{\gamma} = 338 \text{ MeV}$	$E_{\gamma} = 413 \text{ MeV}$	

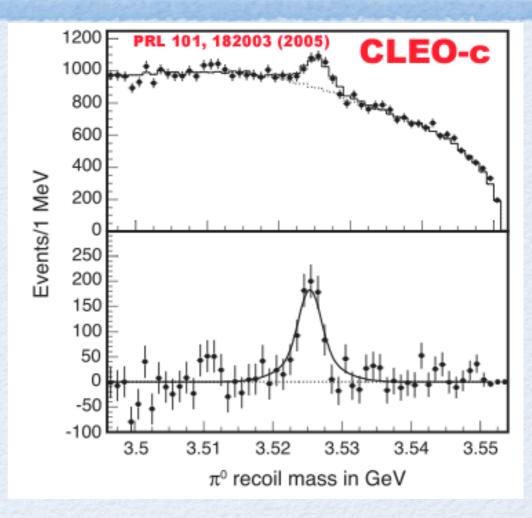
- PandaRoot

- Assumed cross section: 10 nb
- HESR high luminosity mode with 8.64 pb⁻¹ per day
- 14 days of data taking assuming 50% duty factor
- ³F₄ signal visible with a reconstructed width of 1.2 MeV
- Background suppression factor of 1.2x10⁶

arXiv:1311.7597; CHARM 2013 Proceedings; M. Galuska, S. Lange, E. Prencipe, S. Reiter, S. Spataro arXiv:1410.5201; ICHEP 2014 Proceedings; E. Prencipe

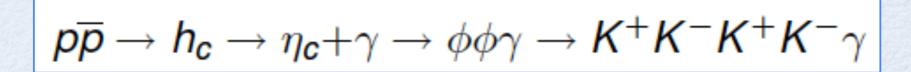


Scrutiny analysis reports (Fast Simulations)


$h_c(1^1P_1)$ in e^+e^- collisions

Observed by CLEO-c and BESIII in $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \gamma \gamma \eta_c$

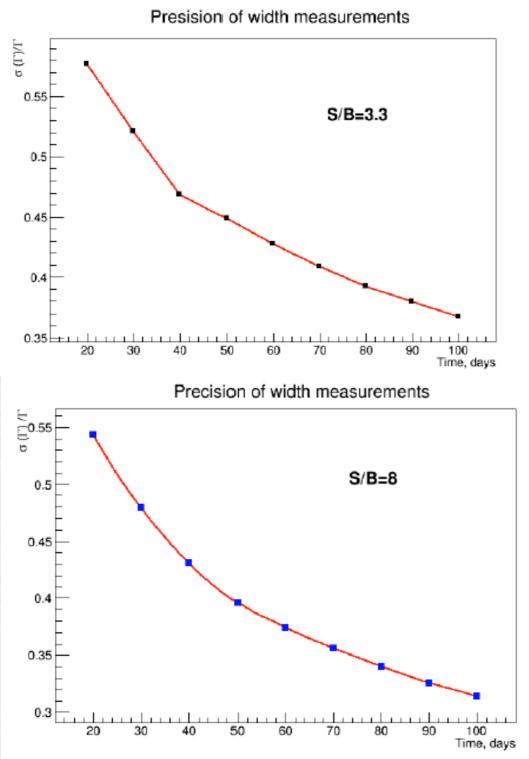
$$\begin{split} M(h_c) &= 3525.31 \pm 0.11 \pm 0.14 \ MeV/c^{2\,*} \\ \Gamma(h_c) &= 0.70 \pm 0.28 \pm 0.22 \ MeV^{\,*} \end{split}$$



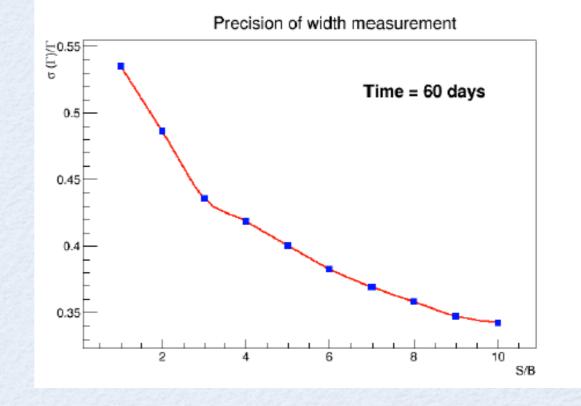
* PRD 86, 092009 (2012) BESIII

Hyperfine-splitting of P-wave states: $\Delta M_{HF}(1P)=(M(1^{3}P))-M(1^{1}P_{1})=$ $=(m(\chi_{cJ}))-m(h_{c})=$ $=-0.01 \pm 0.11 \pm 0.15 \text{ MeV}/c^{2}*$ Test of Lorentz-structure of confinement potential and validation of LQCD and NRQCD predictions Errors dominated by h_{c}

h_c(1¹P₁) at PANDA (Dima Melnychuk)

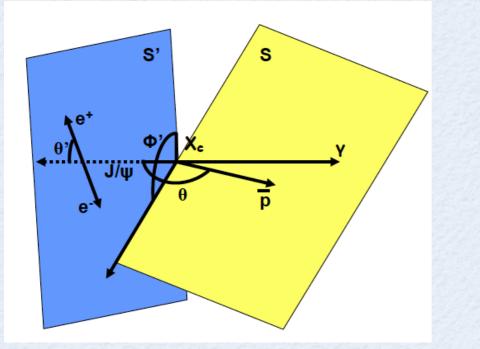


	Background cross-section		
Decay mode of η_c	decay mode	σ	
Decay mode of η_c	$p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$	360 nb	
$\eta_{m{c}} ightarrow \phi\phi,\; m{BR}=$ 2.6 \cdot 10 $^{-3},$		37 nb	
$\phi \rightarrow K^+ K^-, BR = 0.49$	$ ho \overline{p} ightarrow \phi \phi \pi^0$	<6 nb	
		30 µb	
Signal cross-section			
	Signal to background ratio		
E835: $\Gamma_{p\overline{p}}B_{\eta_c\gamma} = 12 \text{ eV}$ $\sigma_{p\overline{p} \rightarrow h_c \rightarrow \eta_c + \gamma} = 40 nb$	decay mode	S/B	
$\sigma_{pp \to n_c \to \eta_c + \gamma} = 4000$	$p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$	3.3	
E835: PRD72,032001(2005)	$p\overline{p} ightarrow K^+ K^- \phi \pi^0$	30	
1000.1 KD72,002001(2000)	$ ho \overline{p} ightarrow \phi \phi \pi^0$	>7	
	$p\overline{p} ightarrow K^+K^-\pi^+\pi^-\pi^0$	>5	


With 28.8% reconstruction efficiency and luminosity 10³¹ cm⁻²s⁻¹, 6 h_c per day is expected

h_c(1¹P₁) at PANDA (Dima Melnychuk)

Dependence on time


Dependence on S/B ratio

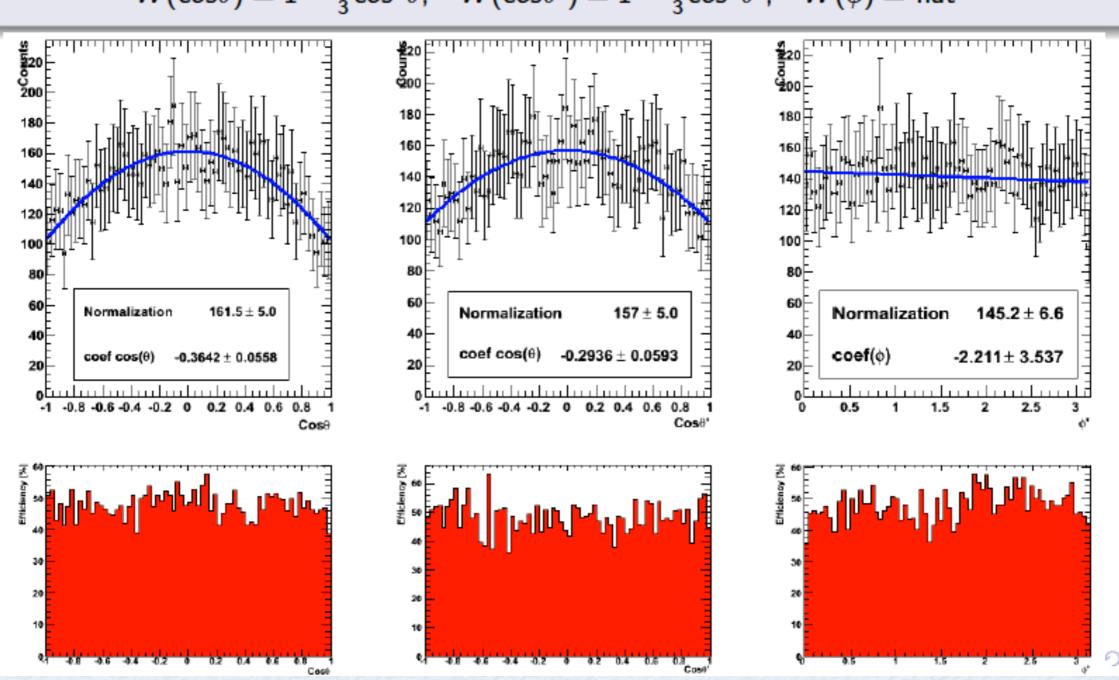
Resonable time for h_c width measurements is around 60 days with L=10³¹ cm⁻² s⁻¹

X_{cJ} angular distributions

The measurement of the angular distributions in the radiative decays of the χ_c states provides the multipole structure of the radiative decay and the properties of the $c\bar{c}$ bound state.

Signal

 $\sigma(\chi_{c1} \rightarrow J/\psi\gamma) \sim 1.7 \text{ nbarn}$ $\sigma(\chi_{c2} \rightarrow J/\psi\gamma) \sim 2 \text{ nbarn}$ E835 Collaboration, Nucl.Phys.B 717,34 (2005)

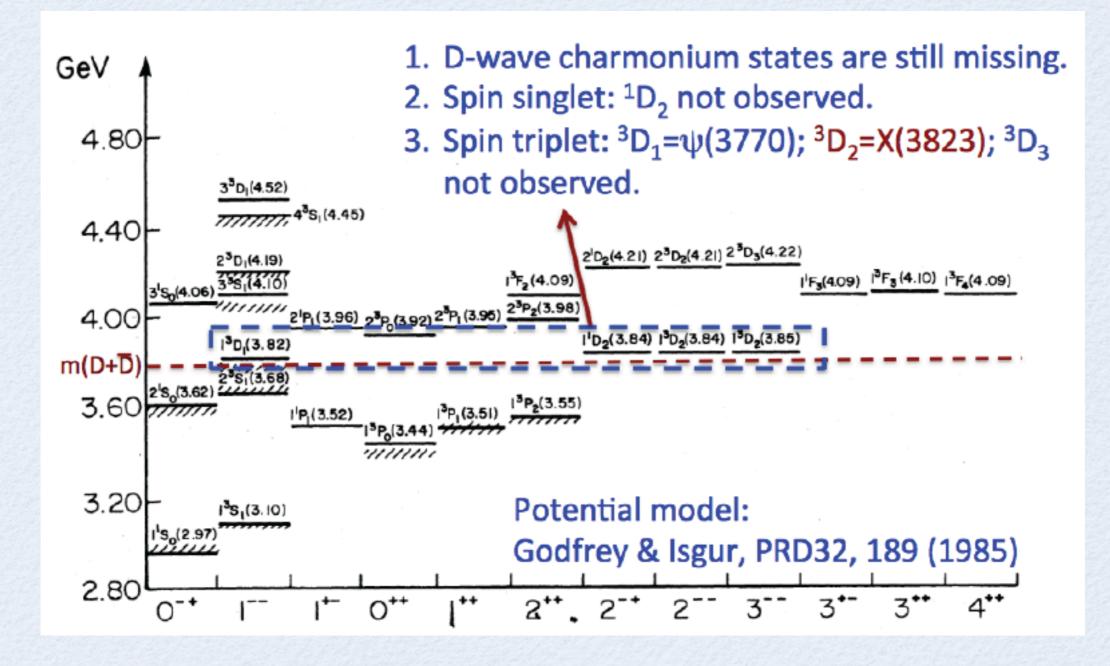

Background

Background: $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$: $\sigma(\chi_{c2})=0.12 \text{ mb}$ CERN-HERA 70-03 (1970)

With 48% reconstruction efficiency and luminosity 10^{31} cm⁻²s⁻¹ χ_{cJ} angular distribution with 5 σ : - χ_{c1} : 13 days (only e⁺e⁻) - χ_{c2} : 36 days (only e⁺e⁻)

$p\overline{p} \rightarrow \chi_{c1} \rightarrow J/\psi\gamma$ angular distributions

The angles distributions corrected with the efficiency, which is presented in the lower part. The angular distributions for the three angles can be approximately written as:

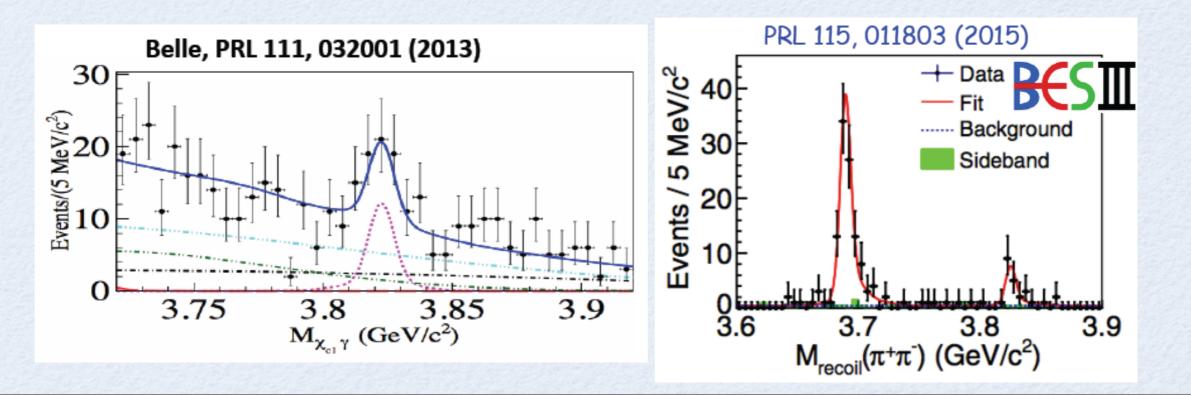


$$W(\cos\theta) = 1 - \frac{1}{2}\cos^2\theta; \quad W(\cos\theta') = 1 - \frac{1}{2}\cos^2\theta'; \quad W(\phi) = \text{flat}$$

Recent activities

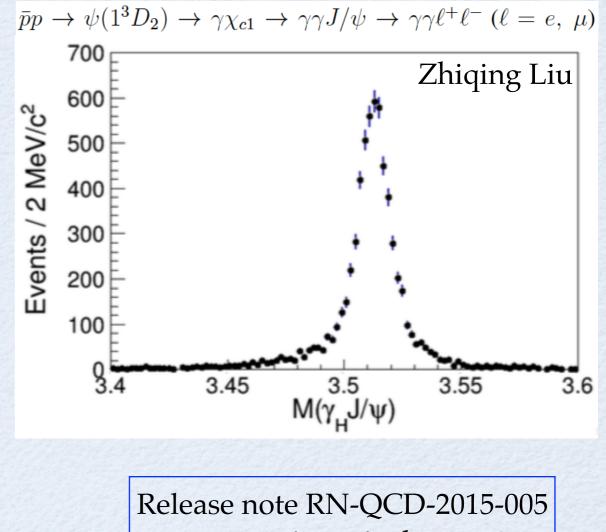
Study of ψ(1³D₂) charmonium state at PANDA (Zhiqing Liu)

One of the topics of the PANDA physics program is the search for D wave $c\overline{c}$ states.


Study of ψ(1³D₂) charmonium state at PANDA (Zhiqing Liu)

- Recent evidence of X(3823) $\rightarrow \gamma X_{c1}$ at Belle in B $\rightarrow XK$ decays and observation at BESIII in e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}X$ production

- M=3821.7 \pm 1.3 \pm 0.7 MeV/c²; Γ < 16 MeV (PRL 115, 011803 (2015) BESIII)


- J^{P} unknown; C = -1

- Candidate for 1³D₂ charmonium state

Study of ψ(1³D₂) charmonium state at PANDA (Zhiqing Liu)

- *Goals of analysis: precise mass and width measurement of $\psi(1^{3}D_{2})$, spin-parity measurement.
- *PandaRoot version: scrut 14
- *Full detector setup and full simulation
- *15 scan points with 0.5 MeV step with 0.5 pb⁻¹/ point (≈15 days)
- *Add 5-7 points for fine scan (150 KeV step) to measure mass and width (spin-parity)
- ★Total beam time \approx 3 weeks (L=10³¹ cm⁻²s⁻¹)
- *Challenge: high statistics (10⁹) background MC samples

started inside the PWG

Future plans

 $* h_c$ width measurement using full simulation

 $\star \chi_{cJ}$ angular distribution using full simulations

* h_c in hadrons using full simulation: * $BR(\pi^+ \pi^- \pi^0) < 2.2 \times 10^{-3} (PDG)$ * $BR(2\pi^+ 2\pi^- \pi^0) < 2.2^{+0.8}_{-0.7} \% (PDG)$ * $BR(3\pi^+ 3\pi^- \pi^0) < 2.9\% (PDG)$

> Any other idea is welcome! Anyone is welcome!

Summary

***** Charmonium spectroscopy at PANDA:

- Precision measurements mandatory: e.g. branching fractions, masses and widths
- * Scutiny Group merged proposals made by the various PWGs to a **two year early physics proposal**

Charmonium spectroscopy:

- 13 days at 5.55 GeV/c for χ_{c1} angular distribution studies
- 36 days at 5.73 GeV/c for χ_{c2} angular distribution studies
- 60 days at 5.61 GeV/c for h_c width measurement

***** Future plans:

- Full simulation of the analysis done during the scrutiny process

***** Limited manpower:

- like in Charmonium-like Exotic and Light Mesons PWGs - Anyone is welcome!