

Nucleon structure EMP current activities and future plans

Alaa Dbeyssi, Frank Maas On the behalf of the PANDA-EMP working group

> Helmholtz-Institut Mainz Johannes Gutenberg University

PANDA LV. Collaboration Meeting, 02.12.2015, Vienna

Electromagnetic Processes studied for PANDA

- 1. Time-Like electromagnetic form factors (TL EM FFs) with <u>lepton</u> <u>pair</u>
- 2. Transition Distribution Amplitudes (TDAs) with <u>meson production</u> <u>in ppbar annihilation</u>
- 3. Transverse Parton Distribution Functions (PDFs) in <u>Drell-Yan</u> <u>Production</u>
- 4. Generalized Distribution Amplitudes (GDAs) with <u>hard exclusive</u> <u>processes</u>

Electromagnetic Form Factors: the analyticity

Unified frame for the description of FFs:

$$G(q^{2}) = \frac{1}{\pi} \left[\int_{4m_{\pi}^{2}}^{4m_{p}^{2}} \frac{\operatorname{Im} G(s) ds}{s-q^{2}} + \int_{4m_{p}^{2}}^{\infty} \frac{\operatorname{Im} G(s) ds}{s-q^{2}} \right]$$
$$\lim_{q^{2} \to -\infty} G_{E,M}^{SL}(q^{2}) = \lim_{q^{2} \to +\infty} G_{E,M}^{TL}(q^{2})$$

The measurement of the Form Factors at large q² and in all the kinematical region: test of the analytical nature of the FFs

Time-Like proton electromagnetic form factors

- No individual determination of GE and GM
- Steep behaviour at threshold
- Structures appeared in BaBar data?
 - Resonances (PRD 92 (2015) 034018)
 - Rescattering processes between few coherent sources (PRL 114 (2015) 232301)
- From Factor ratio: Discrepancy between LEAR-BaBar

Periodical structures in TL form factors

Andrea Bianconi, Egle Tomasi-Gustafsson (Talk in EMP session)

Phys. Rev. Lett. 114,232301 (2015), arXiv:1510.06338[nucl-th]

 $F_{osc}(p) \equiv A \exp(-Bp) \cos(Cp + D).$

<u>Optical potential analysis: double</u> <u>layer rescattering densities</u>:

- feeding at small r (by decay of higher mass states into pbar-p)
- depletion at large r (from annihilation into mesons)

Looking for the current and future experiments

- Separate measurement of $|G_{E}|$ and $|G_{M}|$
- Information on the relative phase G_E/G_M
- Steep behavior at threshold
- Babar: Structures? Resonances?
 - Confirmation by other experiments? for other baryons and mesons?
 - Are time reversal related reactions equivalent?
- Analyticity:
 - FF measurement over large energy range
 - Asymptotic behavior (TL proton FFs twice larger than in SL at the same Q²)
 - Access the unphysical region
- Proton and neutron-> global understanding of the nucleon

Current/future experiments: PANDA

- > Feasibility studies (PANDARoot) for measuring $\overline{p}p \rightarrow e^+e^-$ and $\overline{p}p \rightarrow \mu^+\mu^-$ at PANDA:
- Signal identification based on PID probabilities (EMC, STT,...) and kinematical cuts for electrons and Multivariate Analysis
 TMVA (magnet iron yoke,...) for muons
 ^{ac 3}
 ³
 ^{ac 3}
 ³
 ^{ac 3}
 ^{ac 3}
- background studies:

 $\frac{\sigma(\pi^{+}\pi^{-})}{\sigma(l^{+}l^{-})} = [10^{5} - 10^{6}] l = e, \mu$

A rejection at the order of 10⁻⁸ is required

- Separate measurements of |GE|, |GM| and R (using 2 channels)
- Measurements of the proton effective form factor over a large kinematical region
- Measurement of proton FFs in the unphysical region: $\overline{p}p \rightarrow e^+e^-\pi^0$

Current/future experiments: BESII-PANDA

	BESIII	PANDA (e ⁺ e ⁻)	PANDA (mu⁺mu⁻)
s [(GeV/c) ²]	4 - 9.5	5 - 14	5 - ~9
$R= G_E / G_M $	9 % - 35 %	1.4 % - 41 %	5 % - 18.7 %

Current/future experiments: BESII-PANDA

	BESIII	PANDA (e ⁺ e ⁻)	PANDA (mu⁺mu⁻)
s [(GeV/c)²]	4 - 9.5	5 - ~10	@ 5.4
R= G _E / G _M	9 % - 35 %	3.5 % - 38 %	13.3 %

Transition Distribution Amplitudes

Nucleon to meson TDAs

- Occur in collinear factorization description of various hard exclusive processes
- Parameterized as a function of momentum fraction (x_i) , skewness (ξ) and momentum transfer squared (t,u)
- Independent of reaction type, s and q²
- Give information on pionic components of the nucleon wave-function

TDAs with $\overline{p}p \rightarrow \gamma^* \pi^0 \rightarrow e^+ e^- \pi^0$ **channel**

t is small (forward kinematics, pi-N TDAs)

u is small (backward, pi-Nbar TDAs

Accessing TDAs in $\overline{p}p \rightarrow J/\psi\pi^0 \rightarrow e^+e^-\pi^0$ channel

- Test of universality of TDAs
 - Validate independence on reaction type, Q² and s
 - Complementary to $\pi^0 \gamma *$
 - Different phase-space coverage in skewness (ξ) vs momentum transfer (t) space
- Comments received on first version of the note
 - Other potential background sources
 - $\pi^0 \pi^0 \pi^+ \pi^-$, $\pi^0 \pi^+ \pi^- \pi^+ \pi^-$
 - $\pi^0\pi^0 J/\psi$
 - 4C kinematic fitting
 - Signal hypothesis
 - $\pi^0 \pi^0 J/\psi$ background hypothesis
 - Signal purity
 - MSV luminosity

- Two validity regimes
 - Small |t| (Fwd. π^0 , πN bar TDAs)
 - Small |u| (Bwd. π^0 , πN TDAs)

Phase space coverage for $\pi^0 \gamma *$ and $\pi^0 J/\psi$

Efficiency, Purity and expected precision for $\pi^0 J/\psi \rightarrow \gamma \gamma e^+ e^-$

- New set of cuts including kinematic fit implemented:
 - Background contamination <~ 1% attained for all sources
 - Signal efficiency sufficient to attain 5-10% relative uncertainty with full setup (2fb⁻¹, 5 months)

- MSV setup (4 months)
 - Statistics will be too low even for single differential cross-section measurement, but useful for
 - Checking order of magnitude of cross-sections
 - Constraining pionic background sources with cross-sections in the mb range

Transverse Parton Distribution Functions

Drell-Yan processes at PANDA

• Main background: $\overline{p}p \rightarrow n(\pi^+\pi^-)X$

- required rejection factor ~10⁷
- Simulations @ s=30 GeV² and $1.5 \le M_{\gamma^*} \le 2.5$ (non resonance region, large cross section)
- N_{gen}=480 . 10³, 5 months with L=2 . 10³² cm⁻² s⁻¹

Asymmetry measurements:

Unpolarized DY:
$$A^{\cos 2\varphi} \rightarrow h_1^{\perp}$$

Single-polarized DY: $A^{\sin(\varphi \pm \varphi s^2)} \rightarrow h_1^{\perp}, h_{1T}, f_{1T}^{\perp}$

 $arphi\,$: angle between hadron and lepton planes

 $arphi_{s2}$: angle between hadron spin and lepton plane

Drell-Yan processes at PANDA

Summary

- The proton FFs can be measured at PANDA over large momentum range with unprecedented accuracy
 - Development of an event generator for radiative corrections is ongoing
- > Accessing the pion-nucleon TDAs at PANDA
 - Promising results are obtained with the full luminosity mode
 - The low statistics provided by the MSV are not sufficient to make a precise measurement of the TDAs.
 - Possibility to access other meson-Nucleon TDAs at PANDA?
- PDFs will be also measured at PANDA with Drell-Yan Productions
 - Update of the feasibility studies,
 - investigation of electron channel, is planned

> Precise studies for $\overline{p}p \rightarrow \gamma\gamma$ and $\overline{p}p \rightarrow \pi^0\gamma$ is also planned

- > Study of the ppbar annihilation into light meson at PANDA:
 - Effective lagrangian model for binary processes
 - Monte Carlo event generators for background processes

Summary

- 5 parallel talks are presented in this meeting:
 - Periodic structures in time-like form factors: access to hadron formation through optical model analysis (<u>E. Tomasi-Gustafsson, SphN, Saclay</u>).
 - Update on feasibility studies for the measurement of proton time-like form factors from pbar p -> mu(+)mu(-) (<u>I. Zimmermann, HIM</u>).
 - First results of a global analysis of pion production in pbar-p annihilation (Wang-Ying, IPNO).
 - Updated results on feasibility measurements of pion-N TDAs through pi0+Jpsi (<u>E. Atomssa, IPNO</u>).
 - Test of a superconducting shield for the PANDA polarized target (<u>B. Froehlich, HIM</u>).
- 1 talk for the Collaboration wide review
 - Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR (<u>D.</u> <u>Kahnefdt, HIM</u>)
- 3 Releases Notes
 - **RN-EMP-2015-003:** Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR (HIM)
 - **RN-EMP-2015-006:** Feasibility studies for the measurement of proton time-like electromagnetic form factors in processes of pbar p -> mu+ mu- at PANDA-FAIR (HIM)
 - RN-EMP-2015-007: Feasibility study for measuring pion-N TDAs in PANDA through pbab+p->pi0+J/psi reactions (IPNO)