September 9th 2014

Helmholtz-Institut Mainz

Update on simulations concerning the measurement of the time-like form factors in reactions of $\overline{p} p \rightarrow \mu^+ \mu^-$

Iris Zimmermann

Johannes-Gutenberg Universität Mainz, Helmholtz Institut Mainz

Motivation

• Differential cross section¹ of the reaction

 $R = \frac{|G_E|}{|G_E|}$

→ access to the **time-like**, **electromagnetic form factors**

of the proton G_E and G_M :

 $\frac{\sigma(\mu^+\mu^-)}{\sigma(\pi^+\pi^-)} \propto 10^{-6}$

 $\frac{d\sigma}{d\cos\theta_{CM}}(s,\theta) = \frac{\alpha^2\pi}{2\cdot s} \cdot \frac{p_l}{\overline{p}} \left(|G_M|^2 \right) \left[\frac{4M_p^2}{s} \left(1 - \beta^2 \cos^2\theta_{CM} \right) \cdot R^2 + \left(1 + \frac{4m_l^2}{s} + \beta^2 \cos^2\theta_{CM} \right) \right]$

- Individual measurement of $|G_E|$ and $|G_M|$
- Strong hadronic background, mainly

$$\overline{p} p \rightarrow \pi^+ \pi^-$$

→ Good muon-pion separation needed!

1) first derived by A.Zichichi et al., Nuovo Cimento XXIV,170 (1962) 09/09/14

Simulation & Analysis

- Simulations for both signal and background at beam momentum of 1.7 GeV/c
 - PandaRoot trunk version (linked to external packages apr13)
 <u>Event generation*:</u>

Signal: $\overline{p} p \rightarrow \mu^+ \mu^- 10^6$ events (expected: ~0.83 * 10⁶ events) Background: $\overline{p} p \rightarrow \pi^+ \pi^- 10^8$ events (expected: ~1.63 * 10¹¹ events) $|\cos(\theta_{CM})| < 0.8$

- Analysis:
 - Preselection of the data, application of different cuts to achieve good background suppression
 - Multivariate Analysis

09/09/14

*Event generators developed by Manuel Zambrana, HIM. Simulation by A. Dbeyssi, D.Khaneft, I. Zimmermann

1) Analysis: Data Preselection

Signal: $p \overline{p} \rightarrow \mu^+ \mu^-$ Background: $p \overline{p} \rightarrow \pi^+ \pi^-$

Preselection of the data

For each event: Combination of pairs

If more than 1 pair: take "best pair" :

- → closest to 180° back-to-back production in center-of-mass system
- Exclude bad fitted tracks
- ➤ Take only pairs which include 1 positive & 1 negative charge
- Both candidates must have hits in MDT

1) Analysis: Data Preselection

After preselection: ... some of the variables...

Muon System

Path length inside iron absorber

 \rightarrow Next Step: Application of hard cuts

Electromagnetic Calorimeter

 $\theta^+_{CM} + \theta^-_{CM}$

2) Analysis: Hard Cuts

First scenario: Application of cuts

Invariant mass [GeV/c]] 2.3 , 2.38 [
$\theta^+_{CM} + \theta^{CM}$ [DEG]] 179.95 , 180.5 [
Path length inside muon system [cm]	> 42.0	
$oldsymbol{P}(\mu^{+})_{MDT}$; $oldsymbol{P}(\mu^{-})_{MDT}$	> 0.99	
$P\left(\mu^{+} ight)_{EMC}$; $P\left(\mu^{-} ight)_{EMC}$	> 0.05	

Beam momentum: 1.7 GeV/c	#Events: Signal	#Events: Background			
Monte-Carlo Simulation	10 ⁶	$1.0425^{*}10^{8}$			
After Preselection	809087 (~80.9%)	8151556 (~ 8.2%)			
After Preselection & Hard Cuts	112278 (~11.2 %)	1660			
Declarge and experience factor 2×10^{-5} , could this be improved?					

Background suppression factor ~ 2 * 10^{-5} → could this be improved?

3) Analysis: Multivariate data classification (Toolkit for Multivariate Analysis)

How to find an optimal decision boundary?

Goal of Multivariate Analysis: Find *optimal decision boundary* using *many variables*, → optimal signal/background separation.

TMVA: Root-integrated software package for processing and evaluation of **multivariate classification methods.**

09/09/14

For instance:

- > Artificial neural networks (Multilayer Perceptron)
- Support Vector Machine (SVM)
- Linear discriminant analysis (Fisher)
- Multidimensional k-nearest neighbour method (KNN)
- ۶ .

3) Analysis: Multivariate data classification (Toolkit for Multivariate Analysis)

Analysis using TMVA

1) Training phase

- Signal and background: Set of variables (X₁,X₂, X₃, ... X_n) as input for each classifier
- MVA output → weight files for each classifier
- > Testing and Evaluation

2) Application phase

 Classification of the new data sample based on the TMVA output

3) Analysis: Multivariate data classification (Toolkit for Multivariate Analysis)

Before training: Apply cuts on training data samples

- > Sum of polar production angles in CMS $\theta^+_{CM} + \theta^-_{CM} > 178.0^\circ$ [DEG]
- > Invariant Mass: $\sqrt{s} \in [2.2; 2.5]$ GeV/c

Correlation between the variables

→ amount of variables can be reduced by excluding strongly correlated variables

Linear correlation coefficients

Correlation Matrix (signal)

3) Analysis: Multivariate data classification

Output of classifier

Support Vector Machine

Multilayer Perceptron

Linear discriminant analysis (Fisher)

TMVA response for classifier: Fisher

3) Analysis: Multivariate data analysis

Receiver operating characteristic (ROC curve)

The ROC curve characterizes the quality of the classification procedure.

Background rejection = 1 - background efficiency

Comparison of the scenarios

Beam momentum: 1.7 GeV/c	#Events: Signal		#Events: Background			
Monte-Carlo Simulation	10 ⁶		$1.0425^{*}10^{8}$			
After Preselection	809 087 (~80.9 %)		8 151 556			
After Preselection & Hard Cuts	112 278 (~11.2%)		1660			
A Scenario A*: In total 12 variables	109 227 (~10.9%)		512			
B Scenario B*: In total 22 variables	112 997 (~11.3 %)		448			
* Applied cuts:						
> Multilayer Perceptron(CFMlp > 0.9983)> Support Vector Machine(SVM > 0.742)> Invariant Mass $\sqrt{s} \in [2.2; 2.5]$		Ba	Current status: Background suppression factor ~ 4.3*10 ⁻⁶			
$\theta^{+}_{CM} + \theta^{-}_{CM} \in [179.99, 180.40]$						
Expected physical signal-to-background ratio ~ 1/7.5						

→ Signal extraction by background subtraction may be possible.

Summary & Outlook

- Simulation & Analysis for beam momentum of 1.7 GeV/c:
 - Signal: $p \overline{p} \rightarrow \mu^+ \mu^-$ 10⁶ events
 - Background: $p \overline{p} \rightarrow \pi^+ \pi^-$ 10⁸ events
 - Analysis: Comparison of hard cuts and multivariate classification methods (TMVA toolkit in ROOT) for signal/background separation.
- ▶ Hard cuts: Signal efficiency ~ 11.2%, background suppression ~2 * 10^{-5}
- ➤ TMVA: Signal efficiency ~ 11.3%, background suppression ~4.3 * 10⁻⁶ could be obtained using MVA methods → Signal extraction by background subtraction?
- Test of different scenarios: search for optimal set of variables/cuts using TMVA classification methods is under investigation

What do we expect?

• At 1.7 GeV/c the expected number of events:

Signal:	N ~ 0.83 * 10 ⁶	events of	$\overline{p} p \rightarrow \mu^+ \mu^-$	$ \cos(\theta_{CM}) < 0.8$
Background:	N~1.63 * 10 ¹¹	events of	$\overline{p} p \rightarrow \pi^+ \pi^- \int$	

 For signal efficiency ~11.3 % and background suppression factor ~4.3 * 10⁻⁶ we could make a rough estimate: Signal: N(after analysis)~ 93790 events Background: N(after analysis)~ 700900 events
 → Signal-to-background ratio ~ 1 : 7.5