Feasibility study: proton time-like electromagnetic form factors with the PANDA experiment

Dmitry Khaneft

Johannes Gutenberg University of Mainz Helmholtz-Institute Mainz

PANDA Collaboration Meeting

Helmholtz-Institut Mainz

 $\bar{p}p \rightarrow e^+e^-/\pi^+\pi$

Nucleon structure: electromagnetic form factors

 $\bar{p} p \rightarrow e^+ e^- / \pi^+ \pi^-$

Zichichi cross-section

Zichichi cross-section, in one-photon approximation, contains information on ${\it G}_{\it E}$ and ${\it G}_{\it M}$

$$\frac{d\sigma}{d\cos\theta} = C[|\mathbf{G}_{\mathbf{M}}|^2(1+\cos^2\theta) + \frac{|\mathbf{G}_{\mathbf{E}}|^2}{\tau}(1-\cos^2\theta)]^*$$

where

$$\Sigma = \frac{\pi \alpha_s^2}{8M^2 \sqrt{\tau(\tau-1)}}$$

$$|G_M| = rac{22.5}{(1+q^2/0.71)^2(1+q^2/3.6)}$$
 for $G_E/G_M = 1$

* A. Zichichi, S. M. Berman, N. Cabibbo, R Gatto, Nuovo Cim. 24, (1962) 170.

* E. Tomasi-Gustafsson and M. P. Rekalo, Phys. Lett. B 504, (2001) 291.

Challenge: background

Expected number of events for $|\cos \theta| < 0.8$ in the $ar{p}p$ center of mass frame

	$q^2[GeV/c]^2$	$N_{G_E/G_M=1}$	
	5.4	829535	
	7.27	111109	
	8.21	49641	
	11.0	6503	
	12.9	2328	
	13.8	1365	
. 1			~

for integrated luminosity $\mathcal{L}=2 f b^{-1}$

Efficiency and suppression study

Events were generated within $|\cos \theta| < 0.8$ range in the $\bar{p}p$ center of mass frame

	$ar{p} p ightarrow e^+ e^-$	$ar{p} ho o \pi^+\pi^-$
$q^2[GeV/c]^2$	$G_E/G_M=1$	
5.4	10 ⁶	10 ⁸
7.27	10 ⁶	
8.21	10 ⁶	10 ⁸
11.0	10 ⁶	
12.9	10 ⁶	
13.8	10 ⁶	10 ⁸

Simulation was performed **@HIMSTER** cluster of **Helmholtz-Institut Mainz**

Selection criteria

- Two particles in the final state
- Particle identification probability
 - Ratio of the deposited energy in the EMC and momentum given by the tracking system
 - Shower shape in the EMC
 - Muon signal
 - Energy deposit in the gas tracker
 - Energy conservation

Selection performance

Signal reconstruction efficiency and background suppression

	$e^+e^-(10^6)$	$\pi^{+}\pi^{-}(10^{8})$
$q^2[GeV/c]^2$	$G_E/G_M = 1$	
5.4	42.3%	0 events
7.27	41.8%	
8.21	43.0%	16 events
11.0	37.8%	
12.9	33.0%	
13.8	32.4%	5 events

G_E and G_M extraction

Efficiency correction

- Sample with expected number of events
- Independent sample for the efficiency correction
- Angular distribution fit
- Extraction of G_E and G_M from the fit function

$\frac{d\sigma}{d\cos\theta} = C |G_M|^2 [(1 + \cos^2\theta) + \frac{|R|^2}{\tau} (1 - \cos^2\theta)]$

Reconstructed performance

Statistical errors only

Reconstructed performance

$R = G_E/G_M$ extracted from the fit

Statistical errors only (PANDA)

12 / 12

Dmitry Khaneft