The Proton EM Form Factors Measurements from 2.0 – 3.1 GeV Energy Scan at BESIII

Alaa Dbeyssi^{1,4}, Paul Larin^{1,2}, Dexu Lin^{1,2,3}, Frank Maas^{1,2,4}, Cristina Morales^{1,4} and Christoph Rosner^{1,2,3} (On Behalf of BESIII Collaboration)

Helmholtz-Institut Mainz
 Johannes Gutenberg Universität

3. HGS-HIRe for FAIR

4. GSI Helmholtzzentrum für Schwerionenforschung GmbH

08-12.09.14, Frascati

PANDA L. Collaboration Meeting

The Proton EM Form Factors Measurem

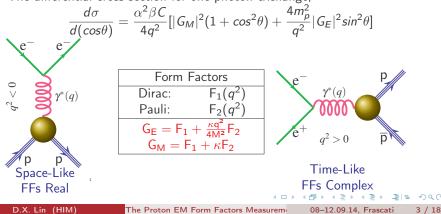
D.X. Lin (HIM)

08-12.09.14, Frascati

1/18

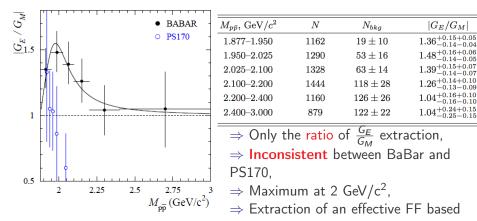
D.X. Lin (HIM)

The Proton EM Form Factors Measurem 08–12.09.14, Frascati


Image: A matrix

.

2 / 18


The Proton Electromagnetic Form Factors

- The internal structure and dynamics of the lightest baryon,
- The Form Factors in Space-Like(SL) region or Time-Like(TL) region, $\Gamma^{\mu} = F_1(q^2)\gamma^{\mu} + \frac{i\kappa}{2m_p}F_2(q^2)\sigma^{\mu\nu}q_{\nu}$
- The differential cross section for one photon exchange,

Data on Proton Time-Like Form Factor Ratio

PRD 87, 092005(2013)

on assumptions,

 \Rightarrow 10%–24% statistics uncertainties.

- * B > * B

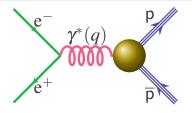
4 / 18

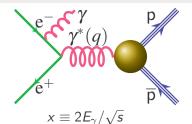
EL OQO

Beijing Spectrometer III (BESIII)

More than **300 scientists (53 institutes)** from **16 countries** are involved in the BES-III Experiment. BES-III is located at the **Beijing Electron Positron Collider II (BEPCII)**. The BEPCII has been in operation since 2008. One of the **recent achievements** was the **discovery of an unpredicted particle**.

D.X. Lin (HIM)


The Proton EM Form Factors Measurem 08


08–12.09.14, Frascati 5 / 18

BESIII vs PANDA

₿€SⅢ	p anda
$e^ \gamma^*(q)$ p e^+ \overline{p}	$\begin{array}{c} p \\ \gamma^*(q) \\ 0000 \\ \overline{p} \\ \overline{\ell} \end{array}$
Energy scan + ISR metho	
Possibility to access thresh	old Large q ² range ($ \overrightarrow{P}_{\overline{p}} $: 1.5-15 GeV/c)
Neutron and proton FFs	S Only proton FFs
-	Unphysical region ($e^+e^-\pi^0$)
	Relative phase between G_E and
-	G_M (polarised target)
Clean signal	Strong hadronic background
	◆□ ▶ ◆雪 ▶ ◆言 ▶ ◆言 ▶ ●目目 少への
D.X. Lin (HIM) The Proton	EM Form Factors Measurem 08–12.09.14, Frascati 6 / 18

How to Measure the Form Factors at BESIII

		,,, ,			
	Energy Scan	Initial State Radiation			
E _{beam}	discrete	fixed			
L	low at each beam energy	high at one beam energy			
σ	$\frac{d\sigma_{\boldsymbol{P}\boldsymbol{\overline{P}}}}{d(\cos\theta)} = \frac{\alpha^2\beta C}{4q^2} [G_M ^2 (1+\cos^2\theta)]$	$rac{d^2 \sigma_{p \overline{p} \gamma}}{dx d heta_{\gamma}} = W(s, x, heta_{\gamma}) \sigma_{p \overline{p}}(q^2) onumber \ W(s, x, heta_{\gamma}) = rac{lpha}{\pi x} (rac{2-2x+x^2}{\sin^2 heta_{\gamma}} - rac{x^2}{2})$			
	$+\frac{4m_p^2}{q^2} G_E ^2\sin^2\theta]$	$W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$			
q^2	single at each beam energy	from threshold to <i>s</i>			
Both techniques, energy scan and initial state 1					

radiation, can be used at BESIII

D.X. Lin (HIM)

The Proton EM Form Factors Measurem

08-12.09.14, Frascati

7 / 18

The Status of Proton Form Factors Measurements at BESIII

	-		
Data Sample	\mathcal{L}_{int}	Energy Range	
J/Ψ	\sim 0.45 fb $^{-1}$	3.097 GeV	
Ψ'	${\sim}0.8~{ m fb}^{-1}$	3.686 GeV	
Ψ″	2.9 fb ⁻¹	3.773 GeV	C. Morales, proton P. Larin, neutron
Ψ(4040)	$0.5 {\rm ~fb^{-1}}$	4.009 GeV	T. Earlin, neutron
Y(4260)	$1.9 { m fb}^{-1}$	4.23 and 4.26 GeV	D. X. Lin, proton
Y(4360)	$0.5 {\rm ~fb^{-1}}$	4.36 GeV	A. Dbeyssi, proton untagged
Y(4600)	$0.5 \ {\rm fb}^{-1}$	4.60 GeV	
	${\sim}12~{ m pb}^{-1}$	2.23, 2.4, 2.8 and 3.4 GeV	'X. R. Zhou, proton
Energy Scan	0.8 fb ⁻¹	3.85 - 4.60 GeV	
	478 pb ⁻¹	2.0 - 3.1 GeV	C. Rosner, proton

Data samples for **ISR method** and **energy scan**.

The data taking was approved in the summer collaboration meeting!

D.X. Lin (HIM)

8 / 18

JI SOCO

Preparatory Studies for the Low Energy Scan Proposal

- Low energy scan at BESIII: 2.0 GeV 3.1 GeV,
- Integrated Luminosity: 478 pb⁻¹
- Multiply physics goals: proton, neutron, hyperon form factors, resonances and R vaules measuments,
- Detail MC simulation for proton form factors measuments,

 \leftarrow C. Morales *et al.*(HIM)

• Uncertainty estimate for hyperon form factors,

← K. Schönning(Uppsala)

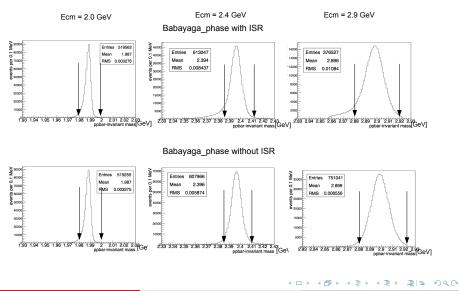
▶ ▲ ∃ ▶ ∃ ∃ ≤ 𝒫 𝔅

• Groups involved: HIM, IHEP, INFN, JGU, Uppsala, USTC, ...

Proton Form Factors Preparatory Studies

To estimate luminoisties to achieve an accuracy in $R_{em}(=\frac{|G_E|}{|G_M|})$ around 10%.

• Use Babayaga_phase (P. Wang and M. Destefanis) as generator for $e^+e^-{\rightarrow}p\overline{p}$ with and w/o rad. corr.

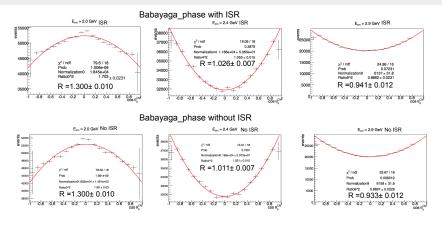

$$\frac{d\sigma}{d\Omega}(q^2,\theta) = \frac{\alpha^2 \beta C}{4q^2} |G_M|^2 [(1+\cos^2\theta) + R_{em}^2 \frac{1}{\tau} \sin^2\theta]$$

$$\tau = \frac{q^2}{4m^2} \text{ and } |G_M| = 22.5(1 + q^2/0.71)^{-2}(1 + q^2/3.6)^{-1}$$
(Eur. Phys. J. A44, 373(2010))

- 10^6 events generated for each bin between 2.0, 2.1, 2.1 ...3.0 GeV with and w/o ISR,
- Apply reconstruction routines to select $e^+e^- \rightarrow p\overline{p}$,
- Fit angular distribution on efficiency corrected MC data and study resulting resolutions in R_{em},

(コン (雪) (ヨ) (ヨ) (ヨ)

Reconstruction $e^+e^- \rightarrow p\overline{p}$



D.X. Lin (HIM)

The Proton EM Form Factors Measurem 08–12.09.14, Frascati 11 / 18

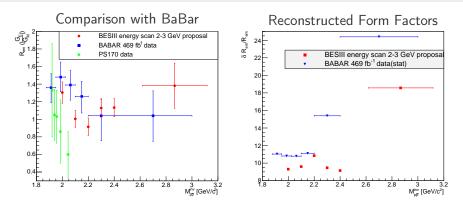
Simulation

Radiative Effects in Angular Distribution Fit

 $f(\cos\theta) = Norm[\tau(1 + \cos^2\theta) + R_{em}^2(1 - \cos^2\theta)]$

D.X. Lin (HIM)

Simulation

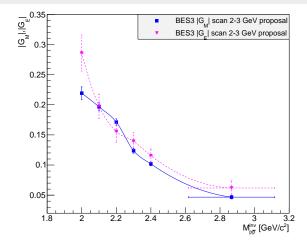

Proton Form Factors from Energy Scan Proposal Simulation

Time-Like (from proposal)						Space-Like			
Mpp	$\mathcal{L}~(pb^{-1})$	ext	extracted from BOSS full simulation fits				$\sqrt{-q^2}$	<u>δRem</u>	
IVIpp	Σ(pb)	Ge	δG <u>E</u> GE	G _M	δ <u>GM</u> GM	R _{em}	$\frac{\delta R_{em}}{R_{em}}$	√-q-	R _{em}
2.00	8.95	0.29	10.5%	0.22	4.8%	1.30	9.3%	1.99	10.8%
2.10	10.8	0.20	10.2%	0.20	3.4%	1.01	9.6%		
2.20	13.0	0.16	11.4%	0.17	3.1%	0.91	10.9%	2.18	13.9%
2.3084	20.0	0.14	10.0%	0.12	3.4%	1.13	9.5%	2.27	14.9%
2.3950	35.0	0.12	9.7%	0.10	3.1%	1.13	9.2%	2.35	31.9%
2.644	65.0	0.07	15.6%	0.07	5.2%	1.25	14.7%	2.59	32.1%
2.9	100.0	0.05	29.6%	0.04	8.5%	1.24	28.3%	2.91	129.7%
3.08	150.0	-	35.0%	-	8.5%	-	35.0%		

- The relative error for the last point, 3.08 GeV, is estimated based on the simulation of 2.9 GeV,
- To combine the last three energy points, 19% accuracy for R_{em} and G_E , and 6% accuracy for G_M would be achieved.
- NEW: accuracy in time-like region similar as for space-like.

Simulation

Comparison of Energy Scan Proposal with BaBar


* The last point in the plots is to combine the simulated energy points 2.644, 2.9 and 3.1 GeV.

D.X. Lin (HIM)

14 / 18

리님

Extract G_{M} and G_{E} Separately

Precise luminosity measurement at BESIII, it's possible to Extract $|G_M|$ and $|G_E|$ Separately.

D.X. Lin (HIM)

EL OQO

Required Beam Time for the Proposed Data Taking

- The designed peak luminoisity at $\Psi^{\prime\prime}(3770),$
- The luminosity decreased with the energy decreasing from optimized energy,

 $\mathcal{L} \propto E_{beam}^4$

- Tuning time required by accelerator to achieve good status,
- Required beam time is 4 months (include tuning time) to take 478 pb⁻¹ data.
- Data taking will be started in the end of this year.

▲ Ξ ► Ξ Ξ < < ○</p>

Conclusions

- An accuracy between 9% 15% can be achieved for the ratio (R_{em}) of the EM form factors of proton with the proposed low energy scan,
- To extract $|G_E|$ and $|G_M|$ without any asumption is possible with accuracies between 9% 15% for $|G_E|$ and 4% 9% for $|G_M|$,
- It's the first time to measure R_{em} , $|G_M|$ and $|G_E|$ in a wide energy range (2.0 to 3.10 GeV) in very narrow q^2 -bins,
- Study of surprising structures in cross section is possible with **energy scan**,

∃ ► ▲ ∃ ► ∃ =

Thank You for Your Attention!

D.X. Lin (HIM)

The Proton EM Form Factors Measurem 08-12.09.14, Frascati

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

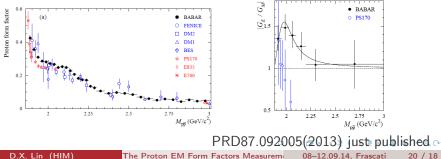
.

18 / 18

▶ ΞΙΞ · • ○ ۹ ()

Backup

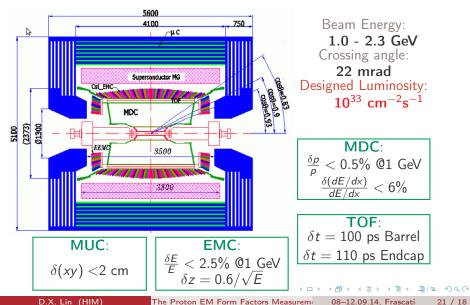
The Proton EM Form Factors Measurem 08-12.09.14, Frascati


19 / 18

Proton Form Factors in Time-Like Region

• The differential cross section is written as a function of $G_E(E)$ and $G_M(Magnetic)$ for one photon exchange.

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\alpha^2 \beta C}{4q^2} [|G_M|^2 (1 + \cos^2\theta) + \frac{4m_p^2}{q^2} |G_E|^2 \sin^2\theta]$$


• Previous experiments have been performed to measure the proton form factors with the assumption $|G_E| = |G_M|$. Only BaBar and PS170 have measured the **ratio** of electric to magnetic form factors.

Backup

Beijing Spectrometer III (BESIII)

