Light (Hyper-)Nuclei production at the LHC measured with ALICE

TECHNISCHE UNIVERSITÄT DARMSTADT

Nicole Löher for the ALICE Collaboration

EMMI Physics Days 2014

Helmholtz Research School H-QM **Quark Matter Studies**

Nicole Löher | EMMI Physics Days 11.11.2014 1

Phase diagram of nuclear matter

Nicole Löher | 2 | EMMI Physics Days 11.11.2014

QGP in laboratory

TECHNISCHE UNIVERSITÄT DARMSTADT

Large Hadron Collider (LHC) ~ 27 km circumference

pp collisions at $\sqrt{s} = 900$ GeV, 2.76 TeV, 7 TeV and 8 TeV Pb—Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV p—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Centrality in a HIC

Peripheral Pb—Pb collision low multiplicity = low number of tracks (few tens of charged tracks in the detector)

Central Pb—Pb collision

high multiplicity = high number of tracks

(more than 2000 charged tracks in the detector)

Multiplicity in a HIC

Nicole Löher | 6 | EMMI Physics Days 11.11.2014

Table of nuclides

TECHNISCHE UNIVERSITÄT DARMSTADT

Nicole Löher | 7 | EMMI Physics Days 11.11.2014

Hypernuclei

- Hyperons: Baryons, which have at least one s-quark as one of their 3 valence-quarks for example $\Lambda,\,\Sigma,\,\Xi,\,$ or Ω
- Hypernuclei: nuclei, in which at least one neutron is replaced by a hyperon

Hypertriton

→ All hypernuclei are unstable

table of nuclei can be extend to include also hypernuclei

Nicole Löher | 11 | EMMI Physics Days 11.11.2014

Models I

TECHNISCHE UNIVERSITÄT DARMSTADT

Thermal model:

Key parameter at LHC energies: chemical freeze-out temperature *T_{chem}*

Strong sensitivity of abundance of nuclei to choice of *T_{chem}* due to:

- 1. large mass *m*
- exponential dependence of the yield ~ exp(-m/T_{chem})
- yield determined by T_{chem} , if expansion after T_{chem} is isotropic

A. Andronic, P. Braun-Munzinger, J. Stachel, and H. Stoecker, Phys. Lett. B697, 203 (2011), 1010.2995

Nicole Löher | 12 | EMMI Physics Days 11.11.2014

Models II

TECHNISCHE UNIVERSITÄT DARMSTADT

Coalescence model:

Nuclei are formed by protons and neutrons which are nearby and have similar velocities (after kinetic freeze-out)

Nuclei produced at chemical freeze-out

- → can break apart
- → created again by final-state coalescence

FIG. 1. Schematic for the production of a deuteron in the final state of a relativistic collision between two heavy nuclei. J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Analysis strategy

Nicole Löher | 14 | EMMI Physics Days 11.11.2014

Particle identification

ALICE preliminary

 $2.4 \text{ GeV}/c < p_{_{
m T}} < 2.6 \text{ GeV}/c$

Data

— Signal

.5

 $m_{TOF}^2 - m_d^2 (GeV^2/c^4)$

Background

2.5

- Sig + Bkg

Low momenta:

Nuclei are identified using the d*E*/d*x* measurement in the Time Projection Chamber

Higher momenta:

Velocity measurement with the Time of Flight detector is used to calculate the m^2 distribution

- Distance-of-Closest-Approach (DCA) distributions can be used to separate primary particles (produced in the collision) from secondary particles (from knock-out of the material e.g. the beam pipe)
- → Knock-out significant problem at low p_T, but only for nuclei not for anti-nuclei

Efficiency correction

Blast-Wave model

A Blast-wave function is a parameterized description of hydrodynamic flow.

It can be used to describe the shape of transverse momentum p_T spectra in heavy-ion collisions.

Works quite well, since the blast-wave describes the thermal part and the radial flow visible in p_T spectra

Nicole Löher | 18 | EMMI Physics Days 11.11.2014

Nuclei and hypernuclei measurements

Nicole Löher | 19 | EMMI Physics Days 11.11.2014

Deuterons and ³He in Pb-Pb

Spectra are fitted with blast-wave functions in different centrality bins and show radial flow

Nicole Löher | 21 | EMMI Physics Days 11.11.2014

Deuterons in p-Pb

ALICE

Spectra become harder with increasing multiplicity

Nicole Löher | 22 | EMMI Physics Days 11.11.2014

Deuteron to proton ratio

Hypertriton

TECHNISCHE UNIVERSITÄT DARMSTADT

Identification of light nuclei which are daughter tracks originating from decay vertices

Lifetime similar to lifetime of free Λ

```
m(Hypertriton) = 2.991 \pm 0.002 \text{ GeV}/c^2
```

investigated decay channel: Hypertriton \rightarrow ³He + π ⁻

Nicole Löher | 24 | EMMI Physics Days 11.11.2014

Hypertriton

 $m(Hypertriton) = 2.991 \pm 0.002 \text{ GeV}/c^2$

investigated decay channel: Hypertriton \rightarrow ³He + π ⁻

Hypertriton

dN/dy in good agreement with thermal model prediction from Andronic *et al.* for T = 156 MeV

dN/dy comparison

 $\mu_{\rm B} = 0$

Nicole Löher | 27 | EMMI Physics Days 11.11.2014

GSI

Searches for weakly decaying exotic bound states

Exotica - Introduction

H-dibaryon:

First predicted by Jaffe in a bag model calculation (Jaffe, PRL 38, 617 (1977))

Recent lattice calculations suggest bound state or a resonance close to the Ξp threshold

Λn bound state:

H-dibaryon

strongly bound H: 2110 · 0.1 = 211 lightly bound H: 2110 · 0.64 = 1350

H-dibaryon

Nicole Löher | 31 | EMMI Physics Days 11.11.2014

$\overline{\Lambda n}$ bound state

Λn

Expected $\overline{\Lambda n}$ bound states ($\overline{\Lambda n} \rightarrow \overline{d}\pi^+$):

$$N_{\overline{\Lambda n}} = \underbrace{1.38 \cdot 10^7 \cdot 0.0255 \cdot 0.35 \cdot 1.6 \cdot 10^{-2} \cdot 2}_{events} \approx \underbrace{4000}_{BR} = \underbrace{1.38 \cdot 10^7 \cdot 0.0255 \cdot 0.35 \cdot 1.6 \cdot 10^{-2} \cdot 2}_{BR} \approx \underbrace{4000}_{V/dy}$$

Nicole Löher | 32 | EMMI Physics Days 11.11.2014

$\overline{\Lambda n}$ bound state

TECHNISCHE UNIVERSITÄT DARMSTADT

Λn

Expected $\overline{\Lambda n}$ bound states ($\overline{\Lambda n} \rightarrow \overline{d}\pi^+$):

 $N_{\overline{\Lambda n}} = \underbrace{1.38 \cdot 10^7 \cdot 0.0255 \cdot 0.35 \cdot 1.6 \cdot 10^{-2} \cdot 2}_{events} \approx \underbrace{4000}_{BR} \quad dN/dy \quad dy$

No signal visible

From the non-observation we obtain as **upper limit**:

→ $dN/dy \le 1.5 \cdot 10^{-3}$ (99% CL)

Nicole Löher | 33 | EMMI Physics Days 11.11.2014

Comparison to models

The $\overline{\Lambda n}$ bound state and the H-dibaryon are not observed

Different model predictions are of the same order

Upper limits for the two particles are set, at least a factor 10 below model predictions

Existence of these particles with the assumed properties (BR, mass, lifetime) is questionable

Nicole Löher | 34 | EMMI Physics Days 11.11.2014

Conclusion I

Conclusion II

Loosely bound hypertriton is observed

Absolute yields (dN/dy) of light nuclei and hypertriton production in Pb-Pb collisions is in good agreement with thermal model calculation

Thermal model predictions using the temperature which fits the measured nuclei and hypertriton yields are above obtained exotica limits

→ Data provide no support for existence of An and H-dibaryon

Nicole Löher | 36 | EMMI Physics Days 11.11.2014

Centrality in a HIC

VZERO detectors: Two scintillation hodoscopes, which are placed on either side of the interaction point

Asymmetric energy/nucleon in the two beams \rightarrow cms moves with rapidity $y_{cms} = -0.465$

multiplicity classes in p-Pb

Definition of seven multiplicity classes: central → slices in VZERO-A (VOA) amplitude Events (a.u.) ALICE p-Pb at √s_{NN} = 5.02 TeV peripheral **10**⁴ 80-100% 10³ $2.8 < |\eta_{LAB}| < 5.1$ 10² 10 10-20% 20-40% 5-10% **)-5**% Correlation between impact ¹0 100 200 300 400 500 600 800 900 700 parameter and multiplicity is VZERO-A amplitude (a.u.) not as straight-forward as in Pb-Pb

Absorption correction

Anti-nuclei: Additional correction for absorption

Secondary correction

Nuclei: Additional correction for secondaries

- Due to the non-existing knock-out, the search for anti-nuclei is often easier than the search for the corresponding nuclei
- → But efficiency corrections easier for nuclei, because of the unknown anti-nuclei absorption

First order prediction of coalescence model: B₂ independent of p_T

→ Observed in p-Pb and peripheral Pb-Pb

In second order: B₂ scales like the HBT radii \Rightarrow Decrease with centrality in Pb-Pb is understood as an increase in the source volume R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)

In second order: B₂ scales like the HBT radii $\Rightarrow p_T$ -slope which develops in central $B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R_{\perp}^2(m_T) R_{\parallel}(m_T)}$ Pb-Pb reflects the k_T -dependence of the homogeneity volume in HBT

R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)

Efficiencies exotica

Branching ratios exotica

Jürgen Schaffner-Bielich, private communication

Jürgen Schaffner-Bielich et al., PRL 84, 4305 (2000)

Blast-Wave exotica

 p_T -shape of the An bound state and the H-dibaryon estimated from the extrapolation of Blast-Wave fits for π ,K,p

arb. units 0.02 Normalized to unity and Λn convoluted with **H-Dibaryon** Acceptance x Efficiency dyd*p*⊤ d²N to get a weighted Efficiency 0.01 Unknown p_{T} -shape is the main source of uncertainty: Therefore used different 0 0 10 5 15 functions for the systematics p_{T} (GeV/c) (limiting cases: Blast-Wave of deuteron and 3 He)

Nicole Löher | 49

65ï

Lifetime dependence exotica

TECHNISCHE UNIVERSITÄT DARMSTADT

Lifetime (s)	Decay length (cm)	Efficiency	Upper limit dN/dy 99% CL
1.3 • 10 ⁻¹⁰	3.95	0.0531	0.00061
2.63 • 10 ⁻¹⁰	7.89	0.0385	0.0084
5.2 • 10 ⁻¹⁰	15.8	0.0308	0.0011
1.4 • 10 ⁻⁹	42	0.0154	0.0017

Lifetime (s)	Decay length (cm)	Efficiency	Upper limit dN/dy 99% CL
1.3 • 10 ⁻¹⁰	3.95	0.0220	0.001708
2.63 • 10 ⁻¹⁰	7.89	0.0255	0.001474
5.2 • 10 ⁻¹⁰	15.8	0.0320	0.001174
1.4 • 10 ⁻⁹	42	0.0440	0.000854

_ICE

AL