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STANDARD APPROACH

BOSE-EINSTEIN CORRELATION BETWEEN MOMENTA
OF TWO IDENTICAL HADRONS

C (p1, p2) ≡ N(p1, p2)

N(p1)N(p2)
− 1 (1)

IS USUALLY ANALYZED USING THE FORMULA

C (p1, p2) =
w̃(P12;Q)w̃(P12;−Q)

w(p1)w(p2)
=
|w̃(P12,Q)|2

w(p1)w(p2)
≥ 0 (2)

WHERE w(p.x) IS THE SINGLE-PARTICLE
”DISTRIBUTION” (WIGNER FUNCTION) AND

w̃(P12;Q) =
∫
dx e iQxw(P12; x); w(p) =

∫
dx w(p; x)

P12 = (p1 + p2)/2; Q = p1 − p2,



DATA L3

Figure: L3 data for two-jet and three-jet events.



DATA CMS 1

Figure: Two-pion correlation function from CMS (pp at 7 TeV)



GENERAL TWO PARTICLE CORRELATIONS

LET W (p1, p2; x1, x2) BE THE MOMENTUM AND SPACE
”DISTRIBUTION” OF TWO PARTICLES (”SOURCE
FUNCTION”). IF PARTICLES ARE IDENTICAL, THE
OBSERVED MOMENTUM DISTRIBUTION IS

Ω(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) +

+

∫
dx1dx2e

i(x1−x2)QW (P12,P12; x1, x2) ≡

≡ Ω0(p1, p2) [1 + C (p1, p2)] (3)

WHERE P12 = (p1 + p2)/2, Q = p1 − p2, AND

Ω0(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) (4)



NO CORRELATIONS BETWEEN PARTICLES

C (p1, p2) =

∫
dx1dx2e

i(x1−x2)QW (P12,P12; x1, x2)∫
dx1dx2W (p1, p2; x1, x2)

(5)

IF THERE ARE NO CORRELATIONS BETWEEN
PARTICLES,

W (p1, p2; x1, x2) = w(p1, x1)w(p2, x2)

THEN
∫
dx1dx2e

i(x1−x2)Qw(P12; x1)w(P12; x2) = |w̃(P12,Q)|2,

WHERE w̃(P12,Q) =
∫
dx e ixQ w(P12, x).

THUS THE CORRELATION FUNCTION IS

C2(p1, p2) = |w̃(P12,Q)|2
w(p1)w(p2)

≥ 0!!!!

THIS IS THE COMMONLY USED FORMULA.

AGAIN: THIS IS VALID ONLY IF THERE ARE NO
INTER-PARTICLE CORRELATIONS.



CORRELATIONS IN SPACE (1)

IDEA: WHEN PIONS ARE TOO CLOSE TO EACH OTHER
THEY ARE NOT PIONS ANYMORE!!!
( BECAUSE THEIR CONSTITUENTS ARE MIXING AND
THEIR WAVE FUNCTIONS ARE NOT
WELL-DETERMINED).

SINCE HBT EXPERIMENTS MEASURE QUANTUM
INTERFERENCE BETWEEN THE WAVE FUNCTIONS OF
PIONS, THEY CANNOT SEE PIONS WHICH ARE TOO
CLOSE TO EACH OTHER.

THEREFORE W (P12,P12; x1, x2) MUST VANISH AT SMALL
|x1 − x2|, IMPLYING CORRELATION BETWEEN POSITIONS
OF TWO PIONS.



PICTURE



CORRELATIONS IN SPACE (2)

Repeat: W (P12,P12; x1, x2) MUST VANISH AT |x1 − x2| ≈ 0,
MEANING CORRELATION BETWEEN POSITIONS OF
TWO PIONS. THIS IS THE NECESSARY CONSEQUENCE
OF THE FUNDAMENTAL PROPERTY OF HADRONS:
THEY ARE NOT POINT-LIKE.

THUS THE TWO-PION DISTRIBUTION IS OF THE
FORM

W (P12,P12; x1, x2) = w(P12; x1)w(P12; x2)[1− D(x1 − x2)]. (6)

WHERE THE FUNCTION D(x1 − x2) APPROACHES 1 AT
SMALL (x1 − x2) (BELOW, SAY, 1 fm) AND VANISHES AT
LARGER DISTANCES.



CORRELATIONS IN SPACE (3)

THE HBT CORRELATION FUNCTION BECOMES:

C (P12,Q) =
|w̃(P12,Q)|2

w(p1)w(p2)
− Ccorr (p1, p2);

Ccorr =

∫
dx1dx2e

i(x1−x2)Qw(P12; x1)w(P12; x2)D(x1 − x2)

w(p1)w(p2)
(7)

ONE SEES THAT THE CORRELATED PART IS
NEGATIVE. MOREOVER, SINCE IT GETS
CONTRIBUTION MOSTLY FROM THE REGION OF
SMALL x, IT EXTENDS TO LARGER Q THAN THE
FIRST, UNCORRELATED, PART. CONSEQUENTLY, THE
TOTAL HBT CORRELATION FUNCTION IS EXPECTED
TO BE NEGATIVE AT LARGE Q (NEXT SLIDE).



EFFECT OF THE FOURIER TRANSFORM
∆x ∆p

Figure:



EXAMPLE

FOR ILLUSTRATION, TAKE

∆(x1 − x2) = Θ[r2cut − |~x1 − ~x2|2 − (t1 − t2)2];

w(P, x) = e−|~x |
2/R2

e−t
2/τ2f (P)
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Figure: Oscillating two-pion correlation function. R = rcut = τ = 1 fm.



DATA CMS 2

Figure: Two-pion correlation function for various multiplicities from CMS
(pp at 7 TeV)



COMMENTS

(i) The presented qualitative argument shows that the
observed negative values of the HBT correlation function are
not accidental but reflect the fundamental fact that hadrons
are NOT POINT-LIKE. Therefore this region of Q2 deserves
special attention in data analysis. It seems that the effect
simply MUST BE THERE and the real experimental
challenge is to determine its position and its size. Precise
measurements should allow to determine the distance at
which the hadron structure is affected by its neighbors and
thus also give information on the density at which the
hadron gas starts melting into quarks and gluons.

(ii) More serious calculations, as well as a detailed
comparison with data are clearly needed and are in progress
(together with W.Florkowski). The preliminary results
indicate that the effect significantly depends on the
orientation of Q. This points to necessity of separate
measurements in side, out and long directions.



DERIVATION OF THE HBT FORMULA (I)

Density matrix in momentum space:

ρ(p1, p2; p′1, p
′
2) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p′1x ′1+p′2x

′
2)ρ(x1, x2; x ′1, x

′
2) (8)

The particle distribution is

Ω(p1, p2) = ρ(p1, p2; p1, p2) (9)

The Wigner function:

W (p1, p2; x+1 , x
+
2 ) =

∫
dx−1 dx−2 e i(p1x

−
1 +p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) (10)

with

x+ = (x + x ′)/2; x− = x − x ′ (11)



DERIVATION OF THE HBT FORMULA (II)

Symmetrization:

ρ(p1, p2; p′1, p
′
2)→ ρ(p1, p2; p′1, p

′
2) + ρ(p1p2; p′2, p

′
1) (12)

Ω(p1, p2) = ρ(p1, p2; p1, p2) + ρ(p1p2; p2, p1) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p1x ′1+p2x ′2)ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p2x ′1+p1x ′2)ρ(x1, x2; x ′1, x

′
2)(13)

dx1dx
′
1 = dx+1 dx−1 ; dx1dx

′
1 = dx+2 dx−2

p1x1 + p2x2 − p1x
′
1 − p2x

′
2 = p1x

−
1 − p2x

−
2

p1x1 + p2x2 − p2x
′
1 − p1x

′
2 = P12x

−
1 + P12x

−
2 + Q(x+1 − x+2 ) (14)

P12 = (p1 + p2)/2; Q = p1 − p2



DERIVATION OF THE HBT FORMULA (III)

Ω(p1, p2) =

∫
dx+1 dx+2

∫
dx−1 dx−2 e i(p1x

−
1 −p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx+1 dx+2 e iQ(x+1 −x

+
2 )

∫
dx−1 dx−2 e i(P12x

−
1 +P12x

−
2 )ρ(x1, x2; x ′1, x

′
2) =

=

∫
dx+1 dx+2 W (p1, p2; x+1 , x

+
2 ) +

+

∫
dx+1 dx+2 e iQ(x+1 −x

+
2 )W (P12,P12; x+1 , x

+
2 ) (15)

If particles are uncorrelated, i.e.
W (p1, p2; x1, x2) = W (p1, x1)W (p2, x2)

one obtains

Ω(p1, p2) = Ω(p1)Ω(p2) + W̃ (P12,Q)W̃ ∗(P12,Q) (16)


