

Charmonium production with ALICE at the LHC

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Michael Winn University of Heidelberg 10.11.2014 EMMI Physics Days GSI Darmstadt

Outline

1) Charmonium in Pb-Pb collisions at the LHC

- Motivation
- Measurements by ALICE

2) Charmonium in p-Pb collisions at the LHC

- Motivation
- Measurements by ALICE

3) Conclusion and Outlook

Heavy-ion collisions: Quark-Gluon Plasma Physics

- Heavy-ion collisions: experimental access to many-body physics governed by QuantenChromoDynamics
 ¹⁶
- Lattice QCD:

at vanishing baryochemical potential at close to realistic quark masses

cross-over from Hadron Resonance Gas (HRG) to **Quark-Gluon Plasma**

 \rightarrow tested by ultra-relativistic heavy-ion collisions at the LHC

M. Winn

Quark-Gluon Plasma: heavy quarkonia as a tool

- Key measurement: direct experimental signature for deconfinement
- Heavy quarkonia: bound states of cc/bb-quark pairs

model systems for interaction of color charges at T=0 and finite T

- → color screening and thermal width influencing bound states first discussed as sign of deconfinement in heavy-ion collisions by Matsui & Satz Phys.Lett.B 178 (1986) link: DOI: 10.1016/0370-2693(86)91404-8
- → theory effort towards quantitative understanding review about quarkonia theory at finite T: A. Mocsy, P. Petreczky, M. Strickland Int. J. of Mod. Phys. A, Vol. 28, 1340012 (2013) link: arXiv:1302.2180

M. Winn

Heavy-ion collisions and charmonium detection

Charmonium (cc̄) bound vector states J/ψ and ψ(2S)

 $\begin{array}{ll} \mathsf{BR}(\mathsf{J}/\psi \ \rightarrow e^+e^-/\mu^+\mu^-) &\approx 6 \ \% \\ \mathsf{BR}(\psi(2S) \ \rightarrow e^+e^-/\mu^+\mu^-) \approx 0.8 \ \% \end{array}$

→ accessible in nucleus-nucleus collisions

Charmonium in heavy-ion collisions: 'melting' as initial idea

• Suppression of J/ψ production via color screening as a probe of deconfinement in heavy-ion collisions since 1986

T. Matsui and H. Satz, Phys.Lett.B 178 (1986) link: DOI: 10.1016/0370-2693(86)91404-8

• Sequential suppression of quarkonia as a function of temperature: \rightarrow guarkonia as thermometer F.Karsch, H. Satz, Z.Phys. C51 (1991) link: DOI: 10.1007/BF01475790

- Underlying picture: charmonia produced before QGP formation
 - → subsequent 'melting' in fireball

Charmonium in heavy-ion collisions at the LHC: new effects

- Large charm quark densities & charm conserved: new mechanism beyond 'melting'
 - → late stage production: sign of deconfinement by non-primordial production

Start of collision

Development of quark-gluon plasma Hadronization P. Braun-Munzinger and J.Stachel, Nature 448 (2007)

• 2 scenarios:

1) The Statistical Hadronization Model

charmonium production exclusively at phase boundary P. Braun-Munzinger and J. Stachel, Phys.Lett.B, 490 (2000) link: arXiv:0007059

2) Kinetic Models

 J/ψ production and destruction during lifetime of deconfined phase from initially uncorrelated and from same hard-scattering $c\bar{c}$ pairs

R. L. Thews, M. Schroeder, J. Rafelski, Phys.Rev.C, 63 (2001), link:arXiv:0007323

M. Winn

J/ψ measurements at the LHC

Acceptance of p_{τ} -differential inclusive J/ Ψ measurements in Pb-Pb collisions (picture by A. Maire)

ALICE high p_{τ} reach statistics llimited, for $\mu^{+}\mu^{-}$ limit from from pp reference, not from Pb-Pb

 \rightarrow reach will be extended in RUN 2

CMS/ATLAS low p_{τ} reach instrumental Rapidity limits all instrumental

• Only ALICE down to $p_{\perp} = 0$ GeV/*c* in Pb-Pb collisions:

→ low- p_{τ} region most crucial for non-primordial production and charm thermalization aspects

Charmonium with ALICE at the LHC

Inclusive J/ ψ and ψ (2S) down to p_{τ} = 0 GeV/c at forward rapidity

M. Winn

Charmonium with ALICE at the LHC

J/ψ analyses in Pb-Pb collisions

link: arXiv:1311.0214 Phys.Lett. B734 (2014) 314-327

→ relying on data-driven mixed-event technique, for µ⁺µ⁻ also direct fit limitations: µ⁺µ⁻: tracking eff. unc. & pp reference; e⁺e⁻: statistics & pp reference 12/33

J/ψ analyses in Pb-Pb collisions

13/33

Nuclear modification factor observables

- $N_{J/\psi \text{ in } AA(pA)}$: measured yield in A-A/p-A
- In absence of nuclear effects:

 $R_{AA} = 1$ and $R_{pA} = 1$ for high-Q² processes

M. Winn

Nuclear modification factor observables

• In absence of nuclear effects:

 $R_{_{AA}}$ = 1 and $R_{_{pA}}$ = 1 for high-Q² processes

J/ψ results in Pb-Pb: centrality dependence

- Qualitatively different behavior at LHC compared to RHIC
- Predicted by models including non-primordial J/ψ production

M. Winn

J/ψ results in Pb-Pb: centrality dependence

- No significant centrality dependence beyond $\langle N_{nart} \rangle = 70$
- Hint for less suppression at midrapidity than at forward rapidity expected in statistical model/transport models

M. Winn

J/ψ results in Pb-Pb: rapidity dependence

link: arXiv:1311.0214 Phys.Lett. B734 (2014) 314-327

 $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$ $|y_{cms}| < 0.8$ $2.5 < y_{cms} < 4.0$

- Clear rapidity dependence visible
 - in contrast to expectation in melting scenario
 - in accordance with expectation from non-primordial production

J/ψ results in Pb-Pb: p_T dependence

link: DOI: 10.1016/j.nuclphysa.2014.09.082 prelim. e+e-: QM' 14

 $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}: |y_{_{CMS}}| < 0.8$ $\sqrt{s_{_{NN}}} = 0.2 \text{ TeV}: |y_{_{CMS}}| < 0.35$

- p_{τ} dependence of suppression in constrast to RHIC observation
- Observed pattern in accordance with increased non-primordial production
 - \rightarrow support for late stage 'combination' pictures at low p_{T}

J/ψ results in Pb-Pb: p_T dependence

link: DOI: 10.1016/j.nuclphysa.2014.09.082 prelim. e⁺e⁻: QM' 14

link: arXiv:1311.0214 Phys.Lett. B734 (2014) 314-327

- Strong p_{T} dependence of suppression
- Good agreement with CMS at high $p_{\scriptscriptstyle T}$
- At high p_{T} potentially different physics at work (energy loss)
 - \rightarrow support for late stage 'combination' pictures at low p_{T}

M. Winn

Elliptic flow and J/ψ at the LHC

• Simplified picture of elliptic flow: sufficient for the following discussion

initial coordinate space asymmetry momentum space asymmetry in final state

• Finite elliptic flow for charmonium: pointing to (partial) **thermalization**

\rightarrow challenging analysis: first result at the LHC by ALICE

applying innovative analysis technique

link: arXiv:1303.5880 Phys.Rev.Lett. 111 (2013) 162301

M. Winn

EMMI Physics Days 10.11.2014

21/33

J/ψ results in Pb-Pb: elliptic flow

- 2.7 σ significance in 20-40% centrality for 2 < p_T < 6 GeV/c
 - \rightarrow indication for non-zero flow: support for thermalization
 - \rightarrow more statistics for conclusions needed

subsequent observation by CMS of large v_2 (link: HIN-12-001) at higher p_T in slightly different rapidity windows (preliminary result)

M. Winn

ψ(2S) results in Pb-Pb

- Important measurement to disentangle between transport models
 & statistical model
- Reconciliation between ALICE and CMS difficult, but acceptance not overlapping
- Lowest p_{T} in most central collisions not yet accessible
 - \rightarrow additional statistics in Pb-Pb required

M. Winn

Displaced J/ψ at mid-rapidity in Pb-Pb

Prelimimary SQM '13: link: arXiv:1311.7269

- Access to prompt J/ψ and to Beauty hadrons
- Unique low p_{τ} capability complementary to CMS
- → interpretation of inclusive J/ψ not altered by Beauty feed-down
- → first constraints on beauty hadrons at low p_{-} at LHC

Predicted J/ ψ modifications in p-Pb at the LHC

Color Evaporation Model (CEM) R. Vogt, , link: arXiv:1003.3497 Phys.Rev.C 81 (2010) Color Singlet Model (CSM) E. Ferreiro et al., link: arXiv:1305.4569 Phys.Rev.C 88 (2013)

Saturation via Colour Glass Condensate (CGC)

H. Fujii et al., arXiv:1304.2221 Nucl.Phys. A915 (2013)

Coherent energy loss of pre-resonant cc

Arleo et al., link: arXiv:1212.0434 JHEP 1303 (2013)

Charm shadowing & dipole break-up

Kopeliovich et al., link: arXiv:1012.5648 Nucl. Phys.A 864 (2011)

Hot medium effects

Y. Liu et al., link: arXiv:1309.5113, Phys. Lett. B 728 (2014))

 negligible/small nuclear absorption expected

Caveats:

- no consensus about pp
- production mechanism
- besides direct J/ ψ : feed-down from B hadrons, ψ (2S) and χ_{a}

M. Winn

Impact of shadowing on nuclear modification factor in Pb-Pb

- Large influence on Pb-Pb result and its interpretation
- Large uncertainties in parametrizations and different results
- → measurement in p-Pb essential

M. Winn

p-Pb results: rapidity dependence

μ⁺μ⁻: link: arXiv:1308.6726 JHEP 1402 (2014) 073

Prelim. HP' 13 e⁺e⁻: link: arXiv:1404.1615 to appear in Nucl. Phys. A (Hard-Probes '13)

Red muon channel results consistent with LHCb

ALI-PREL-73445

- Consistent with shadowing and/or coherent energy loss model
- Specific Color Glass Condensate model based on CEM discarded

p-Pb results: p_{_} dependence compared to Pb-Pb

Prelim. HP' 13: link: arXiv:1404.1615 to appear in Nucl. Phys. A

• Different p_{τ} dependencies of nuclear modification factor in Pb-Pb and p-Pb/Pb-p

M. Winn

p-Pb results: p_{\perp} dependence compared to Pb-Pb

• Assuming: $2 \rightarrow 1$ kinematics (e.g. LO CEM) + factorization of nuclear approx. matching of x ranges in p-Pb and Pb-Pb run + factorization of nuclear effects (e.g. only nPDF as nucl. effects in pA)

→ hint of enhancement at low p_{τ} + suppression at high- p_{τ} in Pb-Pb

Strengthening support for non-primordial production

M. Winn

ψ(2S) results in p-Pb

link: arXiv:1405.3796 Submitted to JHEP

- Expectation from shadowing/CGC/coherent energy loss: nuclear modification of $\psi(2S)$ very similar to J/ψ
 - \rightarrow behavior not explained by standard nuclear modifications

M. Winn

Conclusion

Charmonia at the LHC: the observable for deconfinement

- ALICE in key position unique low p_{τ} capability for J/ ψ and ψ (2S) in Pb-Pb and in p-Pb collisions in two different rapidity ranges
- Predictions of transport and statistical hadronization model confirmed based on RHIC experience
 - \rightarrow non-primordial J/ ψ production at the LHC
- Interpretation of J/ψ elliptic flow still premature more statistics required
- ψ(2S) results in Pb-Pb and p-Pb lacking coherent explanation more statistics (Pb-Pb) and theory effort (p-Pb) needed for conclusions

Outlook 2015+

- Additional final ALICE results on J/ψ and $\psi(2S)$ in p-Pb and in Pb-Pb close to publication
- Looking forward eagerly to Run 2:
 - generic predicition for transport and statistical model:

increase of $\mathsf{R}_{_{AA}}^{_{J/\psi}}$ with larger $\sqrt{s}_{_{NN}}$

- larger event statistics

full acceptance Transition Radiation Detector: Link: arXiv:1205.4007
 better electron identification in all systems and triggering in pp/p-Pb at mid-rapidity to acquire better references for Pb-Pb

M. Winn

Back-up: Outlook 2018+

- Run 3: high luminosity upgrade of ALICE
- New 7-layer Silicon Tracker (lower mat. Budget, higher gran.)
- New TPC read-out with GEMs without gating grid
 - \rightarrow 50 kHz Pb-Pb at continuous read-out
 - \rightarrow collect 10 nb⁻¹, equiv. to 8 10¹⁰ events

• Precision measurements of $\psi(2S)$ at forward and mid-rapidity:

 \rightarrow disentangle between transport and Statistical Hadronization Model

- Measurement of total open charm cross section in Pb-Pb collisions (Λ_c , D^o down to $p_{\perp}=0...$):
 - → fix most crucial loosly constrained parameter by experiment!

M. Winn

- Initial conditions
- Pre-equilibrium stage
- Quark-Gluon Plasma phase
- Chemical freeze-out Hadronic rescattering kinetic freeze-out
- **Free-streaming particles**

A standard picture of ultra-relativistic heavy-ion collisions

taken from H. Petersen, QM' 14 studen session link, Courtesy of Madai: link

M. Winn

Back-up: ψ(2S) in p-Pb

Within uncertainties no p_T dependence of double ratio observed

link: arXiv:1405.3796
Submitted to JHEP

M. Winn

M. Winn

Inclusive J/ ψ down to p_{τ} = 0 GeV/c at mid-rapidity Separation of prompt and non-prompt J/ ψ down to low p_{τ} M. Winn EMMI Physics Days 10.11.2014

Inclusive J/ ψ and ψ (2S) down to p_{T} = 0 GeV/c at forward rapidity p-Pb: forward and backward rapidity via beam direction inversion M. Winn EMMI Physics Days 10.11.2014

Back-up: pp-reference at √s = 5.02 TeV & 2.76 TeV

Dimuons:

- \sqrt{s} = 2.76 TeV: measurement in pp
- \sqrt{s} = 5.02 TeV: interpolation of ALICE

results in pp at $\sqrt{s} = 2.76$ TeV and $\sqrt{s} = 7.0$ TeV in bins of y, p_{T}

- extrapolation in *y*, where necessary *y*-ranges only partially overlapping between pp and p-Pb cross-checked with approach chosen for the dielectrons

Dielectrons:

<u>(م</u>1400

က် 1200 မွ

1000

800

600

400

200

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+\mu^-$, 0<p_<15 GeV/c

L_{int} (-4.46<*y*<-2.96)= 5.8 nb⁻¹, L_{int} (2.03<*y*<3.53)= 5.0 nb⁻¹

 $\times d\sigma_{nn}^{J/\psi}/dy$ (interpolated)

M. Winn

Back-up: p-Pb results: p_-dependence

Shadowing and/or coherent energy loss picture capture basic features of data

Low p_{τ} data not described by energy loss model

Theory uncertainties sizeable

M. Winn

Back-up: ψ(2S) in Pb-Pb by CMS

Not same kinematic regime as ALICE preliminaries Nevertheless:

reconciliation with ALICE findings at forward rapidity difficult

→ need higher statistics for better understanding: crucial Run 2 measurement

M. Winn

EMMI Physics Days 10.11.2014

CMS psi(2S)

link: arXiv:1410.1804

Back-up: original sequential melting

F. Karsch, H. Satz, **Z.Phys. C51 (1991) 209-224** link: DOI: 10.1007/BF01475790

Both approaches: nuclear absorption and color screening

In both cases, we have assumed a well-defined bound state "formation time" [23, 28], governing the onset of deconfinement or absorption; this is clearly on oversimplification. Screening will have an effect on the evolution of the bound state even before it has reached its full size [29–31], and a "pre-hadronic" bound state can also interact already with the constituents of a dense hadronic medium [32]. The inclusion of such effects will lead to earlier and stronger suppression. To keep our arguments as simple and transparent as possible, we shall nevertheless retain the idea of a definite formation time and return later to the consequences of a more detailed description.

The abrupt onset of suppression in ε , and its abrupt end in P_T , as obtined from colour screening, is a consequence of the sharp formation time of the bound states in question. If the deconfining medium were present already at time t=0, then we would have to study the evolution of the bound state for a screened potential, and this considerably softens both the ε and the P_T distributions [29–31]. On the other hand, it will take some time before the $c\bar{c}$ or $b\bar{b}$ pair can experience an effect of the medium, and even longer time for the plasma to become established. Hence the distributions we have shown should given an indication of the expected behaviour, even though they will be softened somewhat.

Back-up: J/\psi analyses in p-Pb collisions

