#### **Quarkonia as Probe of Deconfinement in High Energy Nuclear Collisions**

Johanna Stachel, Universität Heidelberg EMMI Physics Days, November 10-11, 2014

in collaboration with P. Braun-Munzinger, A. Andronic and K. Redlich

#### **Charmonia as a Probe of Deconfinement**

Charmonia: bound states of charm and anticharm quarks, e.g.

J/ψ 1s state of ccbar mass 3.1 GeV radius 0.45 fm

the original idea (Matsui and Satz 1986): implant charmonia into the QGP and observe their modification (Debye screening of QCD), in terms of suppressed production in nucleus-nucleus collisions with plasma formation – sequential melting signature as QGP thermometer

"If high energy heavy-ion collisions lead to the formation of a hot quark-gluon-plasma, then color screening prevents  $c\bar{c}$  binding in the deconfined interior of the interaction region. ... It is concluded that  $J/\psi$  suppression in nuclear collisions should provide an unambiguous signature of quark-gluon-plasma formation."



#### Quarkonia

Quarkonia are heavy quark antiquark bound states, i.e. ccbar and bbar • since masses of charm and beauty quarks are high as compared to QCD scale parameter  $\Lambda_{_{\rm OCD}} \sim 200 \text{ MeV}$ non-relativistic Schrödinger equation can be used to find bound states

$$(-\frac{\nabla^2}{2(m_Q/2)} + V(r))\Psi(\vec{r}) = E\Psi(\vec{r})$$

with quark-quark potential of the form

$$V(r) = \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + \frac{32\pi\alpha_s}{9} \frac{\vec{s_1} \cdot \vec{s_2}}{m_Q^2} \delta(\vec{r}) + \dots$$
confinement spin-spin int. tenso

confinement

color Coulomb int.

tensor, spin-orbit, higher order rel. corr.

• with  $\sigma \sim 0.9$  GeV/fm,  $\alpha_s(m_o) \sim 0.35$  and 0.20 for m\_=1.5 and m\_=4.6 GeV obtain spectrum of quarkonia

#### **Charmonium spectrum**



#### **Charmonia at finite temperature**

Consider T«  $m_c$  so QGP of gluons, u,d,s quarks and antiquarks, no thermal heavy quarks Consider c cbar in environment of gluons and light quarks

$$V(r) \to V_{eff}(r, T) \text{ and } m_Q \to m_Q(T)$$

In QGP color singlet and color octet ccbar states can mix by absorption or emission of a soft gluon Modification of  $V_{_{\rm eff}}$ 



- reduced string tension at T approaches Tc
- string breaking due to thermal qqbar and gluons leading to D and Dbar
- for T>Tc confining part disappears and short range Coulomb part is Debye screened to give Yukawa type potential

$$V_{eff}(r,T) \rightarrow -\frac{4}{3} \frac{\alpha_s}{r} e^{-r/\lambda_D}$$

$$\omega_D = 1/\lambda_D$$

Debye screening mass and length

unlike Coulomb potential, Yukawa potential does not always have bound states  $\rightarrow$  dissociation of quarkonia if  $\omega_{n}$  sufficiently large at high T

(idea: T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416 : compare Bohr radius of charmonia  $r_{_{\rm B}}$  and Debye screening length  $\lambda_{_{\rm D}}$ 

for  $r_{_B}$  smaller than  $\lambda_{_D}$  bound states exist even for  $\sigma=0$ for  $r_{_B}$  larger than  $\lambda_{_D}$  no bound states

equivalently to QED where  $r_B(\text{hydrogen}) = 1/(m_e \alpha)$  we have:  $r_B = 3/(2m_Q\alpha_s)$ and the Debye screening mass:  $\omega_D^2 = \frac{4\pi}{3}\alpha_s T^2(N_c + \frac{1}{2}N_f)$ 

bound states then disappear for

 $T \ge 0.15 \times m_Q \sqrt{\alpha_s} \approx 0.16 \,\text{GeV} \,\text{for J}/\psi \,\text{and} \, 0.46 \,\text{for } \Upsilon$ 

#### **Different quarkonia melt at different temperatures**

using 
$$V(r,T) = \frac{\sigma}{\omega_D(T)} (1 - \exp(-\omega_D(T)r)) - \frac{\alpha}{r} \exp(-\omega_D(T)r)$$

F. Karsch and H. Satz (Z.Physik C51 (1991) 209) obtain:

|                        | $\mathbf{J}/\psi$ | $\psi$ ' | $\chi_c$ | Υ    | Υ,   |
|------------------------|-------------------|----------|----------|------|------|
| state                  | 1s                | 2s       | 1p       | 1s   | 2s   |
| mass(GeV)              | 3.1               | 3.7      | 3.5      | 9.4  | 10.0 |
| r (fm)                 | 0.45              | 0.88     | 0.70     | 0.23 | 0.51 |
| $T_D/T_c$              | 1.17              | 1.0      | 1.0      | 2.62 | 1.12 |
| $\epsilon_D$           | 1.92              | 1.12     | 1.12     | 43.3 | 1.65 |
| $({ m GeV}/{ m fm}^3)$ |                   |          |          |      |      |

exact values very model dependent, but basic feature: J/psi, psi', chic, Upsilon' not bound at or little above T<sub>c</sub>, Upsilon survives much longer

#### **Results on Debye screening from lattice QCD**

agree qualitatively, quantitatively still a lot of debate, unclear, how to extract effective heavy quark potential (free energy vs internal energy) One attempt: correlation of Polyakov lines but there are others



#### **Charmonia as a Probe of Deconfinement**

new insight (Braun-Munzinger, J.S. 2000): QGP screens all charmonia, but charmonium production takes place at the phase boundary, enhanced production at colliders – signal for deconfinement

inspiration:  $\psi'$  to J/ $\psi$  for central PbPb collisions at the SPS looks thermal

observation M. Gazdzicki:  $J/\psi$  to  $\pi$  ratio looks thermal (note: this is not our conclusion)



# what happens to deconfined charm quarks at higher beam energy?



low energy: few c-quarks per collision  $\rightarrow$  suppression of J/ $\psi$ high energy: many " "  $\rightarrow$  enhancement "

unambiguous signature for QGP!

partition function:  $\ln Z_i = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T))$ 

particle densities:  $n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \, \mathrm{d}p}{\exp((E_i - \mu_i)/T) \pm 1}$ 

for every conserved quantum number there is a chemical potential:

$$\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3$$

but can use conservation laws to constrain  $V, \mu_S, \mu_{I_3}$ 

fit at each energy provides values for T and μ<sub>b</sub> - get yields of all hadrons for dN/dy need in addition volume per unit y - fix to dN<sub>ch</sub>/deta

good fit to data for central collisions of heavy nuclei at AGS, SPS, RHIC

see e.g.

A. Andronic, P. Braun-Munzinger, J.S. Nucl. Phys. A722(2006)167 nucl/th/0511071

#### **Production of hadrons and nuclei at LHC**



hadron yields for Pb-Pb central collisions from LHC Run1 are well described by assuming equilibrated matter at

T = 156 MeV and  $\mu_b$  < 1 MeV, very close to predictions from lattice QCD for T<sub>c</sub>

multi-hadron collisions in dense regime near Tc bring hadrons into equilibrium (JS, P.Braun-Munzinger, K. Wetterich)



# beam energy dependence of hadron yields from AGS to LHC

following the above T and  $\mu_b$  evolution, features of proton/pion and kaon/pion ratios reproduced in detail



#### extension of statistical model to include charmed hadrons

assume: all charm quarks are produced in initial hard scattering; number not changed in QGP
 hadronization at T<sub>c</sub> following grand canonical statistical model used for hadrons with light valence quarks

number of charm quarks fixed by a charm-balance equation containing fugacity  $g_c$ 

$$N_{c\bar{c}}^{direct} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{therm} + n_{\Lambda_i}^{therm}) + g_c^2 V(\sum_i n_{\psi_i}^{therm}) + \dots$$
  
and for  $N_{c,\bar{c}} << 1 \rightarrow$  canonical:  $N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{therm} \frac{I_1(g_c N_{oc}^{therm})}{I_0(g_c N_{oc}^{therm})}$ 

obtain: 
$$N_D = N_D^{therm} \cdot g_c \cdot \frac{I_1}{I_0}$$
 and  $N_{J/\psi} = N_{J/\psi}^{therm} \cdot g_c^2$  and same for all other charmed hadrons

additional input parameters:  $V, N_{c\bar{c}}^{direct}$ Volume fixed by  $dN_{ch}/d\eta$  $N_{c\bar{c}}^{direct}$  from pQCD as long as precision data are lacking

#### **Destruction and regeneration in transport models**

alternative to statistical hadronization: implementation of screening into space-time evolution of the fireball – continuous destruction and (re)generation

Thews et al, 2001, Rapp et al. 2001, Gorenstein et al. 2001, P.F. Zhuang et al. 2005



#### comparison of model predictions to RHIC data:



# **Quarkonium as a Probe for Deconfinement at the LHC the Statistical Hadronization Picture**



charmonium enhancement as fingerprint of deconfinement at LHC energy only free parameter: open charm cross section in nuclear collision Braun-Munzinger, J.S., Phys. Lett. B490 (2000) 196 and Andronic, Braun-Munzinger, Redlich, J.S., Phys. Lett. B652 (2007) 659

Johanna Stachel

#### **Predictions for LHC energies**



A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel Phys. Lett. B652 (2007) 259

# **Decision on Regeneration vs. Sequential Suppression from LHC Data**



Picture: H. Satz 2009

#### J/psi production in PbPb collisions: LHC relative to RHIC



#### a first try at the total ccbar cross section in pp at LHC



- good agreement between ALICE, ATLAS and LHCb
- large syst. error due to extrapolation to low pt, need to push measurements in that direction
- data factor 2 ± 0.5 above central value of FONLL but well within uncertainty
- beam energy dependence follows well FONLL
- soon more accurate 4pi extrapolation at 7 TeV

#### J/psi and Statistical Hadronization



- production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties
- main uncertainties for models: open charm cross section, shadowing in Pb
- shadowing from pPb collisions: forward y:  $R_{AA} = 0.76(12)$  mid-y  $R_{AA}$  (estim) =0.72(15)

#### **First determination of Debye mass from data**

J/psi formation via statistical hadronization at Tc implies experimental determination of Debye length (mass) and temperature  $\lambda_D < 0.4$  fm at T = 156 MeV

 $\omega_{\rm D}/T > 3.3$ 

can compare to theory:



Fig. 6. (Left) The Debye screening mass on the lattice in the color-singlet channel together with that calculated in the leading-order (LO) and next-to-leading-order (NLO) perturbation theory shown by dashed-black and solid-red lines, respectively. The bottom (top) line expresses a result at  $\mu = \pi T (3\pi T)$ , where  $\mu$  is the renormalization point. (Right) Flavor dependence of the Debye screening masses. We assume the pseudo-critical temperature for 2 + 1-flavor QCD as  $T_c \sim 190$  MeV.

arXiv:1112.2756 WHOT-QCD Coll.

#### quite ok

#### J/psi and transport models (and stat hadronization)



in transport models (Rapp et al. & P.Zhuang, N.Xu et al.) J/psi generated both in QGP and at hadronization

• transport models also in line with  $R_{AA}$ 

part of J/psi from direct hard production, part dynamically generated in QG but different open charm cross section used

(0.5-0.75mb TAMU and 0.65-0.8 mb Tsinghua vs. 0.3-0.4 mb SHM)

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

#### Charm quarks thermalize to large degree in QGP



#### Softening of J/psi pt distributions for central PbPb coll.



P.Zhuang et al. regeneration of J/psi 90% at mid-y, > 60% at forward y



# $p_t$ dependence of $R_{AA}$ supports dominance of new production mechanism at LHC at small $p_t$



#### J/psi vs pt in PbPb collisions relative to pPb collisions



at low pt yield in nuclear collisions above pPb collisions J/psi production **enhanced** in nuclear collisions **over mere shadowing effect** 

#### J/psi flow compared to models including (re-) generation



 $v_2$  of J/ $\psi$  consistent with hydrodynamic flow of charm quarks in QGP and statistical (re-)generation

but:

#### CMS observes similar v<sub>2</sub> at higher p<sub>t</sub>



Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

#### **Suppression of Upsilon States**



centrality integrated: 2S/1S PbPb relative to pp 0.21+-0.07+-0.02 3S/1S " < 0.1 95% C.L. higher upsilon states expected to melt earlier because of larger radius

#### the Upsilon could also come from statistical hadronization

#### ₽Å≺ CMS, Y(1S) (|y|<2.4, ±14% syst.), vs<sub>NN</sub>=2.76 TeV ▲ pp \s=2.76 TeV, |y<sub>cms</sub>|<1.93</li> ■ p-Pb \s<sub>NN</sub>=5.02 TeV, |y<sub>cms</sub>|<1.93</li> Statistical Hadronization Model CMS data 1.2 Pb-Pb \s<sub>NN</sub>=2.76 TeV, |y<sub>cms</sub>|<2.4 $d\sigma_{bb}/dy=13.8 \ \mu b$ 0.8 0.25 0.2 0.6 T • 0.15 0.4 $d\sigma_{bb}/dy=9.2 \mu b$ 0.1 thermal model (T=159 MeV) 0.2 0.05 with corona w/o corona 0 0 C 350 50 250 300 400 100 150 200 n $10^{2}$ $10^{3}$ 10 N <sup>|η|<2.4</sup> Npart tracks

in this picture the entire Upsilon family is formed at hadronization but: need to know first – do b-quark thermalize at all

- total b-cross section in PbPb

Johanna Stachel

SHM/thermal model: Andronic et al.

### **Outlook: spectral distribution is key to thermalization**



but if charm quark thermalize, their spectral distributions should also reflect collective flow of liquid

at LHC shift of paradigm: more central collision  $\rightarrow$  narrower momentum distribution my interpretation: thermalization



#### **Outlook: excited charmonia**

Johanna Stachel



in fact here one can distinguish between the transport models that form charmonia already in QGP and statistical hadronization at phase boundary!

ψ(2S) statistical model scenario

2.5<y<4.0 and p\_>0

50

RUPRECHT-

Centrality (%)

#### J/psi elliptic flow





• J/psi good probe of deconfinement though contrary to initial expectation not via sequential suppression, but reversal of suppresssion to enhancement at high beam energy

• within current uncertainties all J/psi observables at LHC consistent with formation from deconfined charm quarks

• significant progress expected within next decade, will allow models tests with a precision to constitute a proof of deconfinement expect experimental determination of Debye screening mass







#### J/psi spectrum and cross section in pp collisions

#### ALICE PLB704 (2011) 442 arXiv:1105.0380 and PLB718 (2012) 295



 good agreement between experiments
 complementary in acceptance: only ALICE has acceptance below
 6 GeV at mid-rapidity

measured both at 7 and 2.76 TeV <u>open issues:</u> statistics at mid-rapidity polarization (biggest source of syst error)

#### **Reconstruction of J/psi via mu+mu- and e+e- decay**



entries per 40 MeV/*c*<sup>2</sup> 20000 Same event Mixed event 18000 16000 14000 2012-08-01 12000 10000 8000 Pb-Pb at √s<sub>NN</sub> = 2.76 TeV 6000 Centrality: 0 - 10 % 4000 -ME norm. range: 3.2-4.0 Ge $\dot{V}/c^2$ NDF = 1.0725 2000 g. range: 2.92-3.16 GeV/c<sup>2</sup> entries per 40 MeV/c<sup>2</sup> 1000 Signal: 2452.8 ± 325. Data S/B: 0.0241± 0.0032 · MC 800 Signif.: 7.60 ± 0.15 # events = 10089410 600 400 200 -200 2.5 1.5 2 3 3.5 4  $m_{\rm ee}~({\rm GeV}/c^2)$ ALI-PERF-39045

<u>most challenging</u>: PbPb collisions in spite of significant combinatorial background (true electrons, not from I/)( decay but e.g. D- or B-n

(true electrons, not from J/ $\psi$  decay but e.g. D- or B-mesons) resonance well visible

Johanna Stachel



#### TAMU transport model:

Zhao et al., NPA 859 (2011) 114 and priv. comm.

similar fractions in the Tsinghua model

### **Rapidity Dependence of J/psi R**<sub>AA</sub>



comparison to shadowing calculations:
at mid-rapidity suppression could be explained by shadowing only
at forward rapidity there seems to be additional suppression

- need to measure shadowing

for statistical hadronization J/ $\psi$  yield proportional to N<sub>c</sub><sup>2</sup> higher yield at mid-rapidity predicted in line with observation



#### **On the way towards transport coefficients for c-quarks**



#### models constrained by simultaneous fit of $R_{AA}$ and $v_2$

#### J/psi rapidity distribution in pPb compared to pp



ALICE forward/backward arXiv:1308.6726 good agreement with LHCb arXiv:1308.6729 ALICE mid-y hard probes 2013

ALI-DER-60379

### J/psi rapidity distribution in pPb compared to pp



ALICE forward/backward arXiv:1308.6726 good agreement with LHCb arXiv:1308.6729 ALICE mid-y hard probes 2013

good agreement with EPS09 shadowing wo absorption (Ferreiro) also consistent w energy loss models wo shadowing (Arleo) CGC calculation disfavored (Fuji)

#### situation even more dramatic for P-states



#### outlook – what ALICE can do in the future

LHC run1:

2 PbPb runs

- 2010 *O*(10 µb<sup>-1</sup>)
- 2011 O(150 μb<sup>-1</sup>)

luminosity reached  $\mathscr{L}=2\ 10^{26}\ \mathrm{cm}^{-2}\ \mathrm{s}^{-1}$  twice design lumi at this energy

1 pPb run

- 2012/2013 *O*(30 nb<sup>-1</sup>)

from 2/2013 until end of 2014 LS1: consolidation of LHC to allow full energy (we are here

LHC run2: 2015-2018 PbPb running at  $\sqrt{s_{NN}} = 5.5$  TeV to achieve approved initial goal of 1 nb<sup>-1</sup>

late 2018 start LS2 – increase of LHC luminosity und experiment upgrade

LHC run3: 2020 onwards - expect  $\mathscr{L}=6\ 10^{27}\ {\rm cm}^{-2}\ {\rm s}^{-1}$  or PbPb interactions at 50 kHz achieve for PbPb 10 nb<sup>-1</sup> corresponding to 8 10<sup>10</sup> collisions sampled plus a low field run of 3 nb<sup>-1</sup> + pp reference running + pPb - a program for about 6 years

#### outlook open heavy flavor – LHC run3

#### new high performance ITS plus rate increase by 2 oom (TPCwith GEMs)



# J/psi as probe of deconfinement



effect

but also syst uncertainties will decrease with upgrade:

will also add TRD for electron id - reduced comb background

thinner ITS reduced radiation tail

both affect signal extraction

Johanna Stachel



0.2

0

0.05

0.3 0.25

0.2 0.15

0

centrality 40-80%

p<sub>T</sub> (GeV/c)