EXPLORING NUCLEAR MATTER AT SIS 18 ENERGIES with the HADES

H-QM Helmholtz Research School Quark Matter Studies

Claudia Behnke for the HADES Collaboration

STRUCTURE OF (NUCLEAR) MATTER

Access different phases with heating and/or compression

- Water:
 - Compression/heat: Can be set externaly
 - Observables: Phases & phase transitions observable bare by eye

- Heavy-ion collisions (partially controlled)
- Observables: Bulk observables (hadron chemistry,...) Penetrating probes (γ, lepton pairs)

HEAVY-ION COLLISION

HIC at 1 GeV/u

STRUCTURE OF (NUCLEAR) MATTER

"Resonance matter":

- Dominant contribution: Excitation and decay of baryonic resonances
- Life time resonance: τ ~1fm/c

Probing nuclear matter at SIS 18 (UrQMD simulation):

- **Densities:** $\rho_{\rm B}/\rho_0$ > 2-3
- Freeze-out temperature: T < 100 MeV</p>

PROBES OF HEAVY-ION COLLISION

HIC at 1 GeV/u

THE HADES AT GSI, DARMSTADT, GERMANY

- Full azimuthal coverage, 18° to 85° in polar angle
- Hadron and lepton identification:
 - Tracking with 4x6 Multiwire Drift Chambers and superconducting magnet
 - Time of flight measurement with ToF and RPC Walls
 - Specific energy loss in MDC and ToF
 - RICH and shower detectors to identify leptons
- 50 kHz event rate (400 Mbyte/s peak data rate)

HADES BEAM TIMES

2002	C+C	2.0 GeV/u
2004	C+C	1.0 GeV/u
2005	Ar+KCI	1.76 GeV/u
2006	p+p	1.25 GeV, 2.2 GeV, 3.5 GeV
2007	d+p	1.25 GeV
2008	p+Nb	3.5 GeV
2012	Au+Au	1.23 GeV/u
2014	π ⁻ + W, π ⁻ + C, π ⁻ + PE	0.656 GeV/c, 0.69 GeV/c, 0.748 GeV/c, 0.8 GeV/c 1.7 GeV/c

PARTICLE RECONSTRUCTION

PARTICLE RECONSTRUCTION

C. Behnke - EMMI Physics days 2014 (GSI)

STRUCTURE OF (NUCLEAR) MATTER

Hadronic yields fitted with statistical model (THERMUS) to obtain temperature T and baryochemical potential μ_{B}

Describes system at freeze-out!

Filled circles: Nucl.Phys. A772, 167 (2006); open triangles; Phys. Rev. C 73, 034905 (2006); Red circle: Phys. Rev. C 76,052203 (2007); dashed line corresponds to a fixed energy per nucleon of 1 GeV, calculated according to: Phys. Rev. C76,052203 (2007) HADES Point Blue Triangle: Eur.Phys.J. A47 (2011) 21

STRUCTURE OF (NUCLEAR) MATTER

Filled circles: Nucl.Phys. A772, 167 (2006); open triangles; Phys. Rev. C 73, 034905 (2006); Red circle: Phys. Rev. C 76,052203 (2007); dashed line corresponds to a fixed energy per nucleon of 1 GeV, calculated according to: Phys. Rev. C76,052203 (2007) HADES Point Blue Triangle: Eur.Phys.J. A47 (2011) 21

10.+11.11.14

C. Behnke - EMMI Physics days 2014 (GSI)

PROBES OF HEAVY-ION COLLISION

HIC at 1 GeV/u

FIRST-CHANCE COLLISIONS

System	π-Momentum [GeV/c]	Goal
π ⁻ + A	1.7	Kaon in medium potential
π ⁻ + p	0.69	Dilepton emission from baryon resonace
π⁻+ p	0.656 0.748 0.8	Excertation function from baryon resonace measured with hadrons

 π^- p experiments:

- Crucial to control the interpretation of medium effects from SIS to LHC
- Unique chance to study time-like electromagnetic structure of higher lying resonances

Exclusive analysis

PROBES OF HEAVY-ION COLLISION

HIC at 1 GeV/u

THE FREEZE-OUT "COCKTAIL"

Phys.Rev. C84 (2011) M_{ee} [(GeV/c²)⁻¹] -010-2 Ar+KCI @ 1.76 AGeV 0.1 < p < 1.1 GeV/c $\alpha_{e^+e^-} > 9^{o}$ n **1/Ν**^{π0} 10-7 0.2 0.6 8.0 0 0.4 M_{ee} [GeV/c²] π^{0} , η γe⁺e⁻ $\omega \rightarrow \pi^0 e^+ e^-; \omega \rightarrow e^+ e^-$

 ✓ Mult_{π0} is essential for spectrum normalisation
 ✓ "no Mult_η, no Mult_{Excess}!"

$$\begin{array}{l} \pi^{0}, \eta \to \gamma \gamma & \stackrel{\text{conv}}{\Rightarrow} e^{+}e^{-}e^{+}e^{-} \\ \pi^{0}, \eta \to \gamma e^{+}e^{-} \stackrel{\text{conv}}{\Rightarrow} e^{+}e^{-}e^{+}e^{-} \end{array}$$

STAR: PhysRevC.70.044902 CDF: PhysRevD.70.074008 ALICE: Phys. Lett. B 717,162

HADES: - p+Nb 3.5 GeV: PhysRevC.88.024904

MEASURE NEUTRAL MESONS

Definition conversion probability: The probability that a e^+e^- pair from γ will be detected by HADES

Material	Conv [%]
Target	0.05
δ-shield	0.05
Beam pipe	0.04
Radiator gas	0.11
Mirror	0.08
Sum*	0.36

*all values are obtained from Geant3 simulations!

THE FREEZE-OUT "COCKTAIL"

PROBES OF HEAVY-ION COLLISION

HIC at 1 GeV/u

DENSE STAGE

DENSE STAGE

• Normalization to N_{π^0} takes care about A_{part}

scaling Excess of radiation in 0.12 < M < 0.55 GeV/c²

Rapid increase of relative yield reflects the number of Δ 's/ N*'s regenerated in fireball

DENSE STAGE

• Normalization to N_{π^0} takes care about A_{part}

scaling Excess of radiation in 0.12 < M < 0.55 GeV/c²

Rapid increase of relative yield reflects the number of Δ 's/ N*'s regenerated in fireball

COMPARISON TO TRANSPORT

COMPARISON TO TRANSPORT

S. Endres, FAIRNESS 2014

In-medium modifications are visible with baryonic resonances

Similar Idea: F. Seck Master Thesis

COMPARISON TO TRANSPORT

- No VMD inside
- Resonance decay via virtual photon
- Dileptons from rho coming from time integration method
- Collisional broadening to explain medium modifications

KNOW YOUR REFERENCE

Reconstruction of π^0 and η (from p+Nb) with full conversion method!

 π^0 and η need to be understood!

Phys.Rev. C88 (2013) 024904

FUTURE AT SIS 18/SIS 100

- π beams with HADES in 2017,2018,2019...
- Ag+Ag at SIS 18
- HADES will move to SIS100
- Operational from the very beginning
- Important reference measurements:
 - p+n
 - p+A
 - Proton beam energy up to 29 GeV
- Heavy ions
 - HADES A+A < 3.5 GeV</p>
 - CBM: A+A 3.5 35 GeV

WHAT ELSE DID WE LEARN?

- Analysis of cosmic microwave background anisotropies
- Large-scale structures in the universe (galaxies, clusters of galaxies). In particular orbital velocity profiles of galaxies
- Also, hints from cosmic ray spectrum
 (e⁺/e⁻ excess > 10 GeV, 511 keV line)

Searching the U boson ! in electromagnetic processes

MIXING PARAMETER: COMPARISON WITH WORLD DATA SET

- ε²=α'/α (ε² ≈ 10⁻²-10⁻⁸)
- For the first time a rather broad mass range is covered: 0.02 < M_U < 0.6 GeV/c²
 - Clear improvement at low masses (M_U < 0.1 GeV/c²)
 - Complementary information to the KLOE-2 results at higher masses (M_U > 0.13 GeV/c²)
- Au+Au e+e- data might allow to constrain the low-mass region even further

Phys. Rev. Lett. 112 (2014), 221802

Master thesis C. Ungethüm

EMISSIVITY OF DENSE MATTER

R. Rapp and J. Wambach, ArXiv:hep-ph/9909229v1

