

Proposal of a 325 MHz Ladder RFQ for the FAIR Proton Linac

Max Schütt – HIC for FAIR Accelerator Physics Day, Frankfurt a. M., 10.10.2014

Outline

- Introduction & Motivation
- Analytical Model
- Simulations & Tuning
- Prototype Modeling
- Summary, Outview & Timeline

RFQ's at GSI

Current Situation:

RFQ's at GSI

Solution:to SIS18solution:Solution:Solution:95 keV 3 MeV35 MeV35 MeV70Beam Energy (MeV)70Beam Energy (MeV)70Beam Energy (MeV)70Beam Current (mA)35 - 70Beam Pulse (μ s)36Repetition Rate (Hz)4Frequency (MHz)325.224Norm. Emittance at output (μ m)2.1 / 4.2Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW)4.9Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)32.2Klystron (3 Frequency (MHZ)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)32.7 m		Solution:	GOETHE UNIVERSITÄT FRANKFURT AM MAIN		
95 keV 3 MeV35 MeV70 MeVBeam Energy (MeV)70Beam Current (mA) $35 - 70$ Beam Pulse (μ s)36Repetition Rate (Hz)4Frequency (MHz) 325.224 Norm. Emittance at output (μ m) $2.1 / 4.2$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW)4.9RF Power (peak) (MW)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH) ≈ 27 m	Ş	Source LEBT R	FQ 3 CCH-DTL	Зсн-	DTL to SIS18
Beam Energy (MeV)70Beam Current (mA) $35 - 70$ Beam Pulse (µs) 36 Repetition Rate (Hz) 4 Frequency (MHz) 325.224 Norm. Emittance at output (µm) $2.1 / 4.2$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW) 4.9 RF Power (peak) (MW) 2.2 Klystron (3 MW Peak Power) 7 Solid State Amplifier (50 kW) 3 Total Length (RFQ + CH) ≈ 27 m		95 keV	3 MeV	35 MeV	70 MeV
Beam Current (mA) $35 - 70$ Beam Pulse (μ s) 36 Repetition Rate (Hz) 4 Frequency (MHz) 325.224 Norm. Emittance at output (μ m) $2.1 / \underline{4.2}$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW) 4.9 RF Power (peak) (MW) 2.2 Klystron (3 MW Peak Power) 7 Solid State Amplifier (50 kW) 3 Total Length (RFQ + CH) ≈ 27 m		Beam Energy (I	MeV)	70	
Beam Pulse (μ s)36Repetition Rate (Hz)4Frequency (MHz)325.224Norm. Emittance at output (μ m)2.1 / <u>4.2</u> Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW)4.9RF Power (peak) (MW)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH) ≈ 27 m		Beam Current (r	nA)	35 - 70	
Repetition Rate (Hz)4Frequency (MHz) 325.224 Norm. Emittance at output (µm) $2.1 / 4.2$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW) 4.9 RF Power (peak) (MW) 2.2 Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW) 3 Total Length (RFQ + CH) ≈ 27 m		Beam Pulse (ls)	36	
Frequency (MHz) 325.224 Norm. Emittance at output (µm) $2.1 / 4.2$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW) 4.9 RF Power (peak) (MW) 2.2 Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW) 3 Total Length (RFQ + CH) $\approx 27 \text{ m}$		Repetition Rate (Hz)	4	
Norm. Emittance at output (μ m) $2.1 / \underline{4.2}$ Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW) 4.9 RF Power (peak) (MW) 2.2 Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW) 3 Total Length (RFQ + CH) ≈ 27 m		Frequency (N	/IHz)	325.224	
Momentum Spread $\leq \pm 10^{-3}$ Beam Loading (peak) (MW)4.9RF Power (peak) (MW)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH) $\approx 27 \text{ m}$		Norm. Emittance	at output (µm)	2.1 / <u>4.2</u>	
Beam Loading (peak) (MW)4.9RF Power (peak) (MW)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH)≈ 27 m		Momentum Spread		≤ ± 10 ⁻³	
RF Power (peak) (MW)2.2Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH)≈ 27 m		Beam Loading (peak) (MW)		4.9	
Klystron (3 MW Peak Power)7Solid State Amplifier (50 kW)3Total Length (RFQ + CH)≈ 27 m		RF Power (peak) (MW)		2.2	
Solid State Amplifier (50 kW)3Total Length (RFQ + CH)≈ 27 m	Klystron (3 MW Peak Power)		Peak Power)	7	
Total Length (RFQ + CH) ≈ 27 m	Solid State Amplifier (50 kW)		ifier (50 kW)	3	
		Total Length (RF	Q + CH)	≈ 27 m	

RFQ-Parameters

RFQ Parameters:

Parameter	Value	Parameter	Value
f	325.224 MHz	Voltage	80 kV
Beam current	<100 mA	Ep	<36 MV/m
E _{out}	3 MeV	RF power	<1 MW
e _{out,N,95%,trans}	<1.6 mm mrad	Length	~3 m
e _{out,N,95%,long}	<2 MeV deg	R _{p,min}	16.6 kΩm
Pulse length	250 μs	Mass flow	10 l/min

3 Possibilities: 4-Rod-RFQ, 4-Vane-RFQ, Ladder-RFQ

Prototype

RFQ-Prototype Parameters for the Ladder-RFQ prototype cavity: (ideal values)

Parameter	Value	Parameter	Value
Frequency	325.224 MHz	No. of Cells	10
Q-Value	7200	Mini-Vane Length	630 mm
Loss peak.	100 kW	Ladder Height	150 mm
Loss av.	200 W	Ladder Width	285 mm
Beam current	max. 100 mA	Ladder Thickness	20 mm
Shunt-Impedance	40 kΩm	Ladder Distance	40 mm
Voltage	80 kV		

Ladder-RFQ Prototype

Analytical Model

$$L_L = \mu_0 \cdot \frac{l \cdot h}{4b}$$

$$L_Q = \frac{\mu_0 \cdot l}{2\pi} \left(\ln \left(\frac{2l}{\varepsilon \cdot h_r} \right) - \frac{3}{4} \right) \cdot \eta$$

where ε is the fit parameter: $0.50 \leq \varepsilon \leq 1.0$

$$\eta = \frac{C_Q}{C_{LQ} + C_Q} \qquad [0.80 \le \eta \le 0.95]$$

[C_{LQ} is the ring-rod capacity]

$$L_{eff} = L_L + L_Q$$

Analytical Model

$$C_Q[pF] = (l+d)\left[\frac{39.37}{\cosh^{-1}\left[\left(1+\frac{R_0}{\rho}\right)/\sqrt{2}\right]} + \frac{31.05}{R_0/\rho - 0.414} + 25.28 \cdot \ln\left(1+\frac{l_1+l_2}{R_0+\rho}\right) + 8.85 \cdot \frac{V/2-\rho}{h_1+\rho}\right]$$

Rod – capacity, I. Ben-Zvi et al., Proc. LINAC 1990, last term added for used geometry

$$C_{LQ} = \frac{1-\eta}{\eta} \cdot C_Q$$

Results from the model:

$$C_{eff} = \left[C_Q + C_{LQ}\right] \cdot \left[\frac{L_L + L_Q/2}{L_L + L_Q}\right]$$

$$\omega_0 = \frac{1}{\sqrt{L_{eff} \cdot C_{eff}}}$$

Single cell resonance

Zero mode resonance

$$k = \frac{L_L}{2L_{eff}}$$

Coupling factor

$$\Omega_0 = \frac{\omega_0}{\sqrt{1+k}}$$

Analytical Model

Input parameters of vane and cell structure for analytical model:

 $h = 240 \ mm, b = 160 \ mm, l = 40 \ mm, d = 20 \ mm, R_0 = 3.42 \ mm, \rho = 2.56 \ mm$

 $h_1 = 5.0 \text{ mm}, h_2 = 12.59 \text{ mm}, h_R = 28.0 \text{ mm}, V = 14 \text{ mm}, \varepsilon = 0.75, \eta = 0.85$

Result: $f_0 = 326 \text{Mhz} \pm 10 \text{Mhz}$

Width and Height are important parameters for determining the frequency of a Ladder RFQ

Prototype Field-Flatness

Prototype Field-Flatness

Coarse Tuning (Cell Widths)

Tuning – fine Capacitive

Tuning – fine Capacitive

Frequency (Mode 1)

Inductive dynamic tuning

Inductive dynamic tuning

Reduction of L:

 $L \sim \phi$

 $\Phi = \int B \, \mathrm{d}A$

➡ Increase of f

Inductive dynamic tuning

Cutplane name:	Cross Section A
Cutplane normal:	1, 0, 0
Cutplane position:	91.25
2D Maximum [A/m]:	15.87e+03
Frequency:	332.2307
Phase:	90

Dynamic Tuning

Advantages:

- Tuning possible within a Range of ~2 MHz and with an accuracy of approx. 1 kHz
- Inductive and capacitive tuning no problems with conductivity, but danger of multipacting and sparking in capacitive case
- mechanically very stable
- Achieving a Flatness of <2%</p>

Prototype Mechanical Layout

Mechanics

Reduced vis-à-vis surfaces by reasonable notches for efficient pumping: (hf-currents are in the horizontal plane)

Prototype Carrier Ring

Mechanics (Assembly Video)

Cooling by air only (surface)

Summary & Outline

Advantages:

- Mechanical Stability
- relatively "simple" manufacturing process (against 4-Vane)
- Mechanical sizes adequate for 325 MHz
- very low dipole-moments
- Easy access for a fast service and maintenance
- Exchangability of electrode structure

Summary & Outline

Prototyping Timeline:

- Tendering successfully completed and contracted in 05/2014
- Manufacturing Design Documentation started in 06/2014
- Manufacturing Release in 08/2014
- Disposition of Materials and commencement of construction in 09/2014
- Sheduled delivery in 12/2014
- First measurements, tuning and flattness-tests in late 2014 / early 2015

Thank you!