Performance Comparison of SciRods and SciTils

A. Lehmann, S. Motz, A. Britting, F. Uhlig

Motivation for "SciRods"

- Setups for Time Resolution Measurements
- Results with ⁹⁰Sr source
- Results with proton beam

Motivation for "SciRods"

- 30x30x5 mm³ SciTils read out by two 3x3 mm² MPPCs are certainly not the optimum solution in terms of
 - Time resolution
 - Light collection

SciTil caveats:

- Many reflections in all directions before photons hit MPPC
- Detected photons are distributed over a rather wide time interval
- Only few "prompt" photons \rightarrow time resolution position dependent
- Advantages of SciRods (e.g., 5x5x120 mm³):
 - Use only photons totally reflected along scintillator rod
 - $\rightarrow\,$ collected photons at MPPCs arrive within a short time window
 - Read out at both scintillator ends with 3x3 mm² MPPCs
 - \rightarrow good solid angle coverage for scintillation photons
 - \rightarrow many photons travel same distance to MPPC \rightarrow many "prompt" photons

Scintillator Samples

BC408 (τ = 2.1 ns)

- 5 x 5 x 170 mm³
- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 30 x 30 mm³

BC420 ($\tau = 1.5 \text{ ns}$)

- 5 x 5 x 120 mm³
- 5 x 5 x 50 mm³
- 5 x 5 x 30 mm³
- 5 x 10 x 120 mm³
- 5 x 10 x 50 mm³
- 5 x 10 x 30 mm³

- Readout circuit taken from a talk of H. Kanda given at PhotoDet 2012
 - Inverting amplifier circuit with AD8000 high speed chip (1.5 GHz)
 - Capacitive coupling with 47 pF

- Used MPPCs (3x3 mm²)
 - Hamamatsu standard
 - S10362-33
 - Hamamatsu improved
 - S12572-33 (lower afterpulsing)
 - S12652-33 (with trenches)

Measurement Setup

Scintillator rods/tiles read out at opposite sides

- No aluminum wrapping (\rightarrow collect only totally reflected photons)
- Measure pulse heights (\rightarrow number of photons)
- Measure time difference (\rightarrow time resolution)

Source: 1 mCi ⁹⁰Sr with

Trigger Scintillator: ~3 mm Ø from PS185

Albert Lehmann

Expected Number of Photons

Beta electrons simulate minimum ionizing particle

- Energy loss in 5 mm thick scintillator (e.g. 5x5x120 mm³)
 - ~1 MeV (0.92 MeV exact)
- Number of photons created in 5 mm BC408 scintillator

• ~9000

- Number of photons at 3x3 mm² MPPCs
 - e.g., with 5x5 cm² SciRods
 - Assuming PDE of 25% and totally reflected photons
 - ~150 detected photons at each side expected

Number of Photons from SciTil

In average ~120 photons detected (?? calibration correct ??)
Highest close to MPPC and significantly fewer far away from MPPC
Albert Lehmann
SciTil Meeting -- Vienna -- July 24, 2014

Number of Photons from SciRods

342(

Scintillator B

Detect in average 220 (5x5x120 cm³) and 310 (5x5x50 cm³) photons
Highest close to MPPC (~exponential decrease as expected)
Albert Lehmann
SciTil Meeting -- Vienna -- July 24, 2014

Time Resolution of SciTil

MPPC S12652-050C Scintillator: BC408 with alu wrapping

- Time difference
 - varies by almost 1 ns
 - resolution between 240 and 380 ps
- Time resolution
 - varies between 120 and 190 ps across surface
 - best resolution close to sensors

Time Resolution of SciRods

MPPC S12652-050C Scintillator: BC420

- Time difference
 - smooth slope
 - determine x-position !
- Time resolution
 - best resolution directly at sensors
 - little worse in rod center
 - varies from ~50 to ~75 ps and back
 - slightly better for 5x5x50 cm³ SciRod

Only amplification with AD8000

SciRod Time Difference Resolutions

Scintillator $5 \times 5 \times 120 \text{ mm}^3$

	BC	408	BC	420	
MPPC	Mean σ(t1-t2)	Best σ(t1-t2)	Mean σ(t1-t2)	Best σ(t1-t2)	
S10931-100P	166 ± 21	120	131 ± 17	98	
S10931-050P	190 ± 15	170	141 ± 18	114	
S12572-050P			124 ± 20	104	
S12572-015P	202 ± 26	151	169 ± 22	132	
S12652-050C	161 ± 24	125	136 ± 19	101	
Scintillator 5 x 5 x 50 mm ³					
	BC	408	BC	420	

	BC ⁴	408	BC	420
MPPC	Mean σ(t1-t2)	Best σ(t1-t2)	Mean σ(t1-t2)	Best σ(t1-t2)
S10931-100P	173 ± 11	143	127 ± 8	112
S12652-050C	165 ± 11	144	123 ± 9	106

- Only moderate dependence on scintillator length
- Best results for BC420 scint. and S12572-050P/S12652-050C MPPC

Albert Lehmann

• Time resolution $\sigma_{t} = \sigma(t1-t2)/2$

Scintillator 5 x 5 x 120 mm³

	BC	408	BC	420
MPPC	Time resol. (σ_t)	Best time resol.	Time resol. (σ_t)	Best time resol.
S10931-100P	83 ± 11	60	66 ± 9	49
S10931-050P	95 ± 8	85	71 ± 9	57
S12572-050P			62 ± 10	52
S12572-015P	101 ± 13	76	85 ± 11	66
S12652-050C	81 ± 12	63	68 ± 10	51

Scintillator $5 \times 5 \times 50 \text{ mm}^3$

	BC	408	BC420		
MPPC	Time resol. (σ_t)	Best time resol.	Time resol. (σ_t)	Best time resol.	
S10931-100P	87 ± 6	72	64 ± 4	56	
S12652-050C	83 ± 6	72	62 ± 5	53	
Albert Lehmann	SciTil Meeting	Vienna July 24	, 2014	•	

Estimation of Time Resolution

A. Stoykov, et al.; NIM A695 (2012) 202-205; "A time resolution study with a plastic scintillator read out be a Geiger-mode Avalanche Photodiode"

Setup uses 2 samples of BC422 (3 x 3 x 2 mm³) read out by Hamamatsu MPPCs 10362-33-050

Time resolution measured: $\sigma_{f} = 18 \text{ ps-MeV}^{0.5}$

This roughly corresponds to100 pswith80 photo electrons70 pswith150 photo electrons50 pswith300 photo electrons

More Time Resolutions (1)

Scintillator $5 \times 5 \times 120 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	$\sigma_{_t}$	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88		94		101
	S10362-100P(x10)	71		77		74
	S12572-050P	72		77		74
BC420	S12572-015P	60		108		63
	S12572-050P	50	79	74	57	52
		· -	10 100	2		

Scintillator $5 \times 10 \times 120 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	$\sigma_{_{t}}$	σ_{t}	σ_{t}	$\sigma_{_t}$
BC408	S10362-100P	88	116	132	98	93
BC420	S10362-100P	75		121		82

BC420 scintillator provides better results than BC408

Albert Lehmann

More Time Resolutions (2)

Scintillator $5 \times 5 \times 50 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	68		103		74
	S12572-050P	74		67		68
BC420	S12572-050P	78		64		51

Scintillator $5 \times 10 \times 50 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	113		123		92

Scintillator $5 \times 5 \times 170 \text{ mm}^3$

Scintillator	MPPC	left		center		right
		σ_{t}	σ_{t}	σ_{t}	σ_{t}	σ_{t}
BC408	S10362-100P	88	85	129	85	99

Longer and wider rods tend to give worse time resolution

Albert Lehmann

• Position resolution with $\sigma(t1-t2) = 100 \text{ ps}$:

Δx(FWHM) = 100 mm * 235 ps / 1770 ps = 13 mm

Albert Lehmann

SciRod Test at Julich Proton Beam

SciTil/SciRod time resolution tests at 2.9 GeV/c COSY proton beam

27 Jan – 3 Feb 2014

 5 scintillator/SiPM configurations measured simultaneously [enclosed in aluminium box]

5x5x120 mm³ BC420; MPPC S12572-100P; AD8000

- 5x10x120 mm³ BC420; MPPC S12572-100P; 2 MAR-6
- 5x5x50 mm³ BC420; MPPC S12572-050P; AD8000
- 5x10x50 mm³ BC420; MPPC S10931-100P; AD8000 [did not work]
- 30x30x5 mm³ BC408; MPPC S12652-050C; AD8000
- Rough tracking with 8x8 pixel MCP-TOF behind alubox
- TRBv3 data aquisition with PADIWA boards (10x amplifier)
- Several threshold scans of time differences (resolutions) done

Albert Lehmann

Tracking with MCP-TOF

Time Resolutions with Proton Beam

time resolution from time difference of 2 opposite MPPCs at 1 SciRod t_: : time resolution determined with 3 SciRods

Time resolution of SciRod better than SciTil (but BC408) Best time resolution at low thesholds (60-70 ps)

Albert Lehmann

SciTil Meeting -- Vienna -- July 24, 2014

<u>5</u>

Summary and Outlook

- Various sizes of SciRods/SciTils and different MPPCs tested
- Tests with SciRods show very promising results
 - Uniformity of collected photons and time resolution much better for SciRods than for SciTils
 - time resolution $\sigma_{_{\rm t}}$ varies between 50 and 100 ps
 - Dependent upon size (length, width) of SciRod
 - better than SciTils because of more collected photons
 - position resolution (FWHM) down to 13 mm
- Time resolutions obtained with proton beam and TRBv3 DAQ are consistent with those measured with ⁹⁰Sr source
- Outlook:
 - Tests of 120x30x5 mm³ SciRods read out by 4 MPPCs at each side
 - Tests with Ketek SiPMs

Albert Lehmann

Pulse Height Calibration

- Calibration was done with pulsed laser light (372 nm) on MPPCs (also possible with darkcount)
- Whole charge scale calibrated by using different ND filters
 - S10362-33-100P at V_{op} = 72.5 V
 - AD8000 + PS775 (x20) amplifiers
- Each peak corresponds to one photon:
 - ~5 pVs / p.e.
 - charge scale linear up to several hundred photo electrons
 - tested with different ND filters (nd3.3 to nd2.0)

Time Resolution with Laser

- laser light (372 nm) into center of 5x10x50 mm³ BC408 scintillator
- -1 nVs corresponds to ~200 Npe
 - expected for minimum ionising particle

σ_{∧t} ≈ 70-130 ps

Area Sz1 vs Delay Sz1

76

75

Delay [ns]