Forward Endcap Status and Testbeam Results

Malte Albrecht

Ruhr-Universität Bochum Institut für Experimentalphysik I

PANDA L. Collaboration Meeting INFN Frascati, September 09th 2014

Subunit Production	PCB and Cables	ELSA Beamtime
●00		

Final Subunits

- Two final endcap subunits have been produced, one equipped with APDs, the other with VPTTs
- Photodetectors are glued to the crystals with Dow Corning 3145 (irreversible)
- Photodetecor-preamplifier units are filled with Elastosil RT601 casting compound
- Both subunits were mounted to the Proto192 to test mounting, cabling and response at the ELSA beamtime

Subunit Production

PCB and Cables

ELSA Beamtime

Production of APD Subunit

Glueing of APD-Units

- Each glueing is inspected and archived using a DSLR photo
- Illumination of glued surface through the crystal was problematic
- → Usage of a LED-illumination ring (made in Bochum) improved image quality drastically
 - Photos of glueings are archived in the Forward Endcap Production Database using the barcode of each unit

bunit Production	PCB and Cables	ELSA Beamtime
	00000	

Subunit Production - Cables

No. of Cables	VPTT Subunit	APD Subunit	and the second second
Signal	16	32	
High Voltage	$2 \times 16 = 32$	$4 \times 16 = 64$	
Low Voltage	$3 \times 16 = 48$	$3 \times 16 = 48$	
GND Lead	16	16	Seite [2 : 1]
Sensors	2	2	
TOTAL	114	162	Uniter (2 . 1)

- Keep these cables short to make mounting of subunits easier
- Cables are connected to Patch-Panel PCB, which will be placed on the backplate for each subunit (Design presented on June CM by C.Schmidt)

Malte Albrecht (RUB EPI)

FW Endcap Status & Testbeam Results

Test: Mounting Subunit To Mini-Backplate

Malte Albrecht (RUB EPI) FW Endcap Status & Testbeam Results

Test: Mounting Subunit To Mini-Backplate

- Cabling of VPTT-Subunits works fine
- Mounting of APD-Subunit is problematic: Too many and too stiff cables
- PCB cannot be pushed/mounted to the backplate!
- $\rightarrow\,$ Need more flexible/thinner HV cables in APD subunits

Malte Albrecht (RUB EPI) FW Endcap Status & Testbeam Results

Subunit Production	PCB and Cables ०००●००	ELSA Beamtime
Caliliana	d Deutien in the Fernind Federa	

Cabling and Routing in the Forward Endcap

- Used in Proto192 for the two final subunits:
 - Signal: 1 \times 16 (VPTTs) or 2 \times 16 (APDs) Huber&Suhner Enviroflex coaxial cable
 - HV: 4 H&S Enviroflex cables per subunit (4 VPTTs / 8 APDs)
 - LV: Standard AWG20 wire connected to pin header on PCB (needs to be changed in final version)
 - Sensors: 1 flat ribbon-cable (pitch: .5 mm) for 2 sensors

 $\rightarrow\,$ Sophisticated routing scheme (including light fibres!) is needed

Malte Albrecht (RUB EPI)

FW Endcap Status & Testbeam Results

Subunit Production	PCB and Cables	ELSA Beamtime
	000000	

Cables and Routing in the Forward Endcap

- Foreseen for FW endcap:
 - Signal: Feasibility of using H&S Enviroflex is being checked (Possible alternatives: Samtec FCF8 micro coax cable (AWG38); Nexans Filotex 50VMTX)
 - HV: H&S Enviroflex, as in Proto192
 - LV: under investigation
 - Sensors: as in Proto192

Diameter	0.6mm	1.2mm	1.8mm
Attenuation @700Mhz	-3dB/m	-1.9dB/m	-1.3dB/m
Conductor wires	7	1	7
Malte Albrecht (RUI	B EPI)	- W Endcap Status	s & Testbeam Result

Routing Scheme

Subunit Production

- only ≈ 30 mm space between backplate and insulation
- Current idea for the routing scheme:
 - Light Fibres, high voltage, low voltage and sensor cables will be routed vertically as well as horizontally below and inbetween the Patch-Panel PCBs, directly on the aluminium backplate
 - Signal cables will be routed both **vertically** and **horizontally** in a layer **on top of** the PCBs

PCB and Cables

00000

PCB and Cables

ELSA Beamtime

Malte Albrecht (RUB EPI) FW Endcap Status & Testbeam Results

ELSA Beamtime - Setup and Measurement Program

- Used direct electron beam delivered by ELSA (tagger magnet turned off)
- Energies: 1.25, 2.4, 3.2 GeV
- Fibre hodoscope in front of Proto192 for triggering and tracking
- Proto192 mounted on XY-table
- Shot centrally in each of the 32 crystals with all 3 energies for calibration
- Additional measurements with high rates
- Goal of beamtime:
- → Measure response of APD and VPTT units to finally fix design/amplification factor of preamplifier

Subunit Production

Analysis

- Detailed analysis and calibration of data is in progress
- Performed MC simulation with fully featured Proto192 geometry (Geant4) as for previous beamtimes
- Simulations for all energies / targetted crystals finished
- High-Gain/Low-Gain calibration finished
- Energy calibration is being prepared

Response of VPTTs: Calculation vs. Measurement

$$U_{\mathsf{Preamp}}(50\Omega) = \mathsf{LY} \cdot \frac{A_{\mathsf{cath.}}}{A_{\mathsf{xtal}}} \cdot G_{\mathsf{VPTT}} \cdot \mathsf{QE}_{\mathsf{VPTT}} \cdot G_{\mathsf{Preamp}}$$

- $LY \approx 380 \text{ Ph/MeV}$ at -25° C
- $\frac{A_{\text{cath.}}}{A_{\text{xtal}}} = \frac{201.1 \,\text{mm}^2}{676 \,\text{mm}^2}$
- $G_{\rm VPTT} \approx 48$
- QE = 23%
- $G_{\text{Preamp}} = 0.46 \text{ V/pC}$
 - $\Rightarrow U_{\mathsf{Preamp}}(50\Omega) = 92 \, \frac{\mathsf{mV}}{\mathsf{GeV}}$

- Response is (only!) 30% larger than expected (maybe due to reflective foil, ...)
- Largest signals to be expected (w/o magnetic field!) $\approx 1.5 \text{ V}@50\Omega \rightarrow \text{could}$ use higher gain of preamp?

1GeV energy deposit

ELSA Beamtime

PCB and Cables

Response of APDs

Subunit Production

- Yield measured in the lab
 - +20° C
 - APDs operated at *M* = 100 voltage (Hamamatsu)
 - Used blue light pulser and PIN diode reference system
 - \rightarrow Nicely homogeneous response of all APDs (variations \approx 7%)
- Yield measured at beamtime
 - -25° C
 - Shared HV for 8 APDs
 - Matching performed with $M = 200@ 25^{\circ}$ C voltages from Frankfurt/GSI
 - → Response shows two 'groups' of APDs with large difference in response (factor of 2!)

Ringing of APD Preamplifiers

Subunit Production

- Observed massive HF-induced ringing of APD preamplifiers (lab + beamtime)
- Triggered by large HF-spike, all 32 APD preamps start ringing
- Light pulser (blue diode) produces such a spike (rapid capacitor discharge) \rightarrow no measuments with LP and APDs were possible
- Source of the problem not yet fully understood: Characteristics of latest APDs? Behaviour of preamp?
- $\rightarrow\,$ Trying to solve that problem together with Basel colleagues

Subunit	Production

ELSA Beamtime

Blue Light Pulser on APD - Preamp Output Signal

Blue Light Pulser on APD - RINGING (Zoom)

- No rail-to-rail ringing
- Typically around 200-400 mV pp.
- Frequency: $\approx 230\,\text{MHz} \rightarrow$ resonance frequency of OP-amp circuit

Subunit Production

PCB and Cables

Summary

- Analysis of beamtime data is ongoing
- Production of final VPTT subunits can start: Mechanics, cables and electronics are almost fixed
- Second batch of 100 VPTTs has arrived at U Bonn last week!
- Response of APDs needs to be understood
- Ringing of APD preamps is being investigated
- Routing scheme for cables in the cold volume of the endcap is being planned

