Light charge particle flows in the ASY-EOS experiment measured with the KRATTA detector

J. Brzychczyk, S. Kupny – Jagiellonian University, Kraków, Poland J. Łukasik, P. Pawłowski – IFJ-PAN, Kraków, Poland and the ASY-EOS Collaboration

Introduction: The ASY-EOS experiment

- **KRATTA detector**
- detection technique
- methods of data analysis
- **KRATTA data vs UrQMD predictions**
- isotope ratios
- flow parameters
- Conclusions

ASY-EOS Experiment (GSI 2011)

KRATTA

KRAkow Triple Telescope Array

- Detection of light charged particles with isotopic resolution
- 35 telescope modules
- Broad energy range
 (2 < E/A < 260 MeV for p, α)

Active elements of the telescope module

Photodiodes: HAMAMATSU S5377-02

- Active Area: 28x28 mm²
- Thickness: 500 ± 15 μm
- Orientation: (111)
- Dead Layers: 1.5 µm front, 20 µm rear
- Full Depletion: ~170 V
- Dark Current: 30 nA, (Max. 150 nA)

40 ns

- Rise Time:
- Capacitance: 200 pF

CsI(TI): IMP-CAS, Lanzhou, China

- TI concentration: 1500 ppm
- LO non-uniformity: <7%
- Shape:
- Tolerance:
- Truncated pyramids ± 0.1 mm

Wrapping: 3M Vikuiti[™] ESR foil

Reflectance: >98%
Thickness: 65 µm

transverse dimension (cm)

Pulse decomposition analysis

 $\frac{Q_1(e^{-t/\tau_1} - e^{-t/\tau_2})}{\tau_1 - \tau_2} = i(t) \quad \longrightarrow \quad V(t) = Q_1 RC \left(\frac{e^{-t/RC} RC}{(RC - \tau_1)(RC - \tau_2)} + \frac{e^{-t/\tau_1} \tau_1}{(\tau_1 - RC)(\tau_1 - \tau_2)} + \frac{e^{-t/\tau_2} \tau_2}{(\tau_2 - \tau_1)(\tau_2 - RC)} \right)$

Isotope identification maps

Identification threshold lowered to ~2 MeV/u

Mode (maximum position) of current signal PD0

Recognition of background hits

Kohonen self-organized neural network

Energy calibration

(lines from the ATIMA range-energy tables)

Scattering and secondary reactions in the detector material: Simulations with GEANT 4

Reaction probability in the Csl crystals

Energy spectrum

Flows of light charged particles in Au(400 MeV/u) + Au reactions: KRATTA vs FOPI results

Model simulations

UrQMD Q. Li, J. Phys. G 31(2005)1359

"Fermi-gas" parametrization of the symmetry term:

Stopping time = 150 fm/cNucleons $\rightarrow \left[\vec{r}_i, \vec{p}_i \right]$ Clustering procedure $(\Delta r = 2.5 \text{ fm}, \Delta p = 290 \text{ MeV/c})$ $(\Delta r = 3 \text{ fm}, \Delta p = 100 \text{ MeV/c})$

$t/^{3}$ He isotope ratios (20 < E_{kin}/A < 133 MeV)

Proton flow $(20 < E_{kin} < 250 \text{ MeV})$

Deuteron flow $(20 < E_{kin}/A < 160 \text{ MeV})$

Counting the total number of protons/neutrons:

$$N_{p}^{tot} = N_{p} + N_{d} + N_{t} + 2N_{3}_{He} + 2N_{\alpha} + \dots$$

$$N_n^{tot} = N_n + N_d + 2N_t + N_{^3He} + 2N_{\alpha} + \dots$$

. .

Mean multiplicity of all protons (free and bound)

20 < E_{kin}/A < 133 MeV

Elliptic flow $(20 < E_{kin}/A < 133 \text{ MeV})$

Elliptic flow of all neutrons

Conclusions

KRATTA

- good detector performance
- usefulness of photodiodes operating in the double mode

Digital pulse shape analysis

- possibility of pulse decomposition
- efficient recognition of background hits

Results from the ASY-EOS measurements

- flow parameters consistent with FOPI data
- UrQMD (+ clustering) fails in reproducing isotope ratios
- the need for realistic description of cluster formation
- possibility of examining all protons/neutrons

The ASY-EOS Collaboration

<u>Co-Spokespersons</u>: R.C. Lemmon¹ and P. Russotto²

Collaboration

F. Amorini², A. Anzalone¹⁷, T. Aumann³, V. Avdeichikov¹², V. Baran²³, Z. Basrak⁴, J. Benlliure¹³, I. Berceanu¹¹, A. Bickley¹⁴, E. Bonnet⁶, K. Boretzky³, R. Bougault³⁰, J. Brzychczyk⁸, B. Bubak²², G. Cardella⁷, S. Cavallaro², J. Cederkall¹², M. Chartier⁵, M.B. Chatterjee¹⁶, A. Chbihi⁶, M. Colonna¹⁷, D. Cozma¹¹, B. Czech¹⁰, E. De Filippo⁷, K. Fissum¹², D. Di Julio¹², M. Di Toro², M. Famiano²⁷, J.D. Frankland⁶, E. Galichet¹⁸, I. Gasparic⁴, E. Geraci¹⁵, V. Giordano², P. Golubev¹², L. Grassi¹⁵, A. Grzeszczuk²², P. Guazzoni²¹, M. Heil³, J. Helgesson³¹, L. Isaksson¹², B. Jacobsson¹², A. Kelic³, M. Kis⁴, S. Kowalski²², E. La Guidara²⁰, G. Lanzalone²⁹, N. Le Neindre³⁰, Y. Leifels³, Q. Li⁹, I. Lombardo², O. Lopez³⁰, J. Lukasik¹⁰, W. Lynch¹⁴, P. Napolitani³⁰, N.G. Nicolis²⁴, A. Pagano⁷, M. Papa⁷, M. Parlog³⁰, P. Pawlowski¹⁰, M. Petrovici¹¹, S. Pirrone⁷, G. Politi¹⁵, A. Pop¹¹, F. Porto², R. Reifarth³, W. Reisdorf³, E. Rosato¹⁹, M.V. Ricciardi³, F. Rizzo², W.U. Schroder²⁸, H. Simon³, K. Siwek-Wilczynska²⁶, I. Skwira-Chalot²⁶, I. Skwirczynska¹⁰, W. Trautmann³, M.B. Tsang¹⁴, G. Verde⁷, E. Vient³⁰, M. Vigilante¹⁹, J.P. Wieleczko⁶, J. Wilczynski²⁵, P.Z. Wu⁵, L.Zetta²¹, W. Zipper²²

log(Slow+Fast) for thin crystal

Y. Leifels et al., PRL 71, 963 (1993)
 P.Russotto et al., PLB 697 (2011)

